Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
Nat Nanotechnol. 2018 Apr;13(4):309-315. doi: 10.1038/s41565-017-0004-z. Epub 2017 Nov 13.
Fundamental computer science concepts have inspired novel information-processing molecular systems in test tubes and genetically encoded circuits in live cells . Recent research has shown that digital information storage in DNA, implemented using deep sequencing and conventional software, can approach the maximum Shannon information capacity of two bits per nucleotide . In nature, DNA is used to store genetic programs, but the information content of the encoding rarely approaches this maximum . We hypothesize that the biological function of a genetic program can be preserved while reducing the length of its DNA encoding and increasing the information content per nucleotide. Here we support this hypothesis by describing an experimental procedure for compressing a genetic program and its subsequent autonomous decompression and execution in human cells. As a test-bed we choose an RNAi cell classifier circuit that comprises redundant DNA sequences and is therefore amenable for compression, as are many other complex gene circuits . In one example, we implement a compressed encoding of a ten-gene four-input AND gate circuit using only four genetic constructs. The compression principles applied to gene circuits can enable fitting complex genetic programs into DNA delivery vehicles with limited cargo capacity, and storing compressed and biologically inert programs in vivo for on-demand activation.
基础计算机科学概念启发了在试管中新型信息处理分子系统和在活细胞中基因编码电路。最近的研究表明,使用深度测序和传统软件在 DNA 中实现的数字信息存储可以接近每个核苷酸两个比特的最大香农信息容量。在自然界中,DNA 用于存储遗传程序,但编码的信息含量很少接近这个最大值。我们假设在减少 DNA 编码长度和增加每个核苷酸的信息含量的同时,可以保留遗传程序的生物学功能。在这里,我们通过描述一种压缩遗传程序及其在人类细胞中自主解压和执行的实验程序来支持这一假设。作为一个试验台,我们选择了一个 RNAi 细胞分类器电路,它包含冗余的 DNA 序列,因此可以进行压缩,许多其他复杂的基因电路也是如此。在一个例子中,我们使用仅四个基因构建体实现了一个包含十个基因四个输入 AND 门电路的压缩编码。应用于基因电路的压缩原理可以使复杂的遗传程序适应具有有限有效载荷容量的 DNA 输送载体,并在体内存储压缩和生物惰性程序,以便按需激活。