Schreiber Joerg, Arter Meret, Lapique Nicolas, Haefliger Benjamin, Benenson Yaakov
Department of Biosystems Science and Engineering, Swiss Federal Institute of Technology (ETH Zürich), Basel, Switzerland.
Department of Biosystems Science and Engineering, Swiss Federal Institute of Technology (ETH Zürich), Basel, Switzerland
Mol Syst Biol. 2016 Dec 28;12(12):899. doi: 10.15252/msb.20167265.
Constructing gene circuits that satisfy quantitative performance criteria has been a long-standing challenge in synthetic biology. Here, we show a strategy for optimizing a complex three-gene circuit, a novel proportional miRNA biosensor, using predictive modeling to initiate a search in the phase space of sensor genetic composition. We generate a library of sensor circuits using diverse genetic building blocks in order to access favorable parameter combinations and uncover specific genetic compositions with greatly improved dynamic range. The combination of high-throughput screening data and the data obtained from detailed mechanistic interrogation of a small number of sensors was used to validate the model. The validated model facilitated further experimentation, including biosensor reprogramming and biosensor integration into larger networks, enabling in principle arbitrary logic with miRNA inputs using normal form circuits. The study reveals how model-guided generation of genetic diversity followed by screening and model validation can be successfully applied to optimize performance of complex gene networks without extensive prior knowledge.
构建满足定量性能标准的基因电路一直是合成生物学中一项长期存在的挑战。在此,我们展示了一种优化复杂三基因电路(一种新型比例miRNA生物传感器)的策略,即使用预测模型在传感器遗传组成的相空间中启动搜索。我们使用多种遗传构建模块生成传感器电路文库,以获取有利的参数组合,并发现具有大大改善的动态范围的特定遗传组成。高通量筛选数据与从少数传感器的详细机制研究中获得的数据相结合,用于验证模型。经过验证的模型促进了进一步的实验,包括生物传感器重新编程以及将生物传感器整合到更大的网络中,原则上能够使用范式电路实现基于miRNA输入的任意逻辑。该研究揭示了如何通过模型指导生成遗传多样性,随后进行筛选和模型验证,从而在无需广泛先验知识的情况下成功应用于优化复杂基因网络的性能。