Suppr超能文献

数据非依赖性采集质谱分析方法的比较分析:DIA、WiSIM-DIA 和无靶向 DIA。

Comparative Analyses of Data Independent Acquisition Mass Spectrometric Approaches: DIA, WiSIM-DIA, and Untargeted DIA.

机构信息

Department of Molecular and Cellular Neurobiology, CNCR, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, The Netherlands.

Thermo Fisher Scientific, Hemel Hempstead, UK.

出版信息

Proteomics. 2018 Jan;18(1). doi: 10.1002/pmic.201700304.

Abstract

Data-independent acquisition (DIA) is an emerging technology for quantitative proteomics. Current DIA focusses on the identification and quantitation of fragment ions that are generated from multiple peptides contained in the same selection window of several to tens of m/z. An alternative approach is WiSIM-DIA, which combines conventional DIA with wide-SIM (wide selected-ion monitoring) windows to partition the precursor m/z space to produce high-quality precursor ion chromatograms. However, WiSIM-DIA has been underexplored; it remains unclear if it is a viable alternative to DIA. We demonstrate that WiSIM-DIA quantified more than 24 000 unique peptides over five orders of magnitude in a single 2 h analysis of a neuronal synapse-enriched fraction, compared to 31 000 in DIA. There is a strong correlation between abundance values of peptides quantified in both the DIA and WiSIM-DIA datasets. Interestingly, the S/N ratio of these peptides is not correlated. We further show that peptide identification directly from DIA spectra identified >2000 proteins, which included unique peptides not found in spectral libraries generated by DDA.

摘要

数据非依赖性采集(DIA)是一种新兴的定量蛋白质组学技术。目前的 DIA 主要集中在鉴定和定量来自同一选择窗口中多个肽段的碎片离子,这些肽段的质荷比范围在几个到几十个 m/z。另一种方法是 WiSIM-DIA,它将传统的 DIA 与宽选择离子监测(wide selected-ion monitoring,WiSIM)窗口相结合,将前体 m/z 空间分区,以产生高质量的前体离子色谱图。然而,WiSIM-DIA 的研究还不够充分;它是否是 DIA 的可行替代方案尚不清楚。我们证明,与 DIA 相比,WiSIM-DIA 在对富含神经元突触的级分进行的单次 2 小时分析中定量了超过 24000 个独特肽段,跨越五个数量级。在 DIA 和 WiSIM-DIA 数据集定量的肽段的丰度值之间存在很强的相关性。有趣的是,这些肽段的 S/N 比没有相关性。我们进一步表明,直接从 DIA 谱中鉴定出的肽段鉴定出了>2000 种蛋白质,其中包括在 DDA 生成的光谱库中未发现的独特肽段。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6da/5817406/1864b1d446d9/PMIC-18-na-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验