Centre for Advanced Materials, Indian Association for the Cultivation of Science , Kolkata 700032, India.
ACS Appl Mater Interfaces. 2017 Dec 6;9(48):41807-41817. doi: 10.1021/acsami.7b16055. Epub 2017 Nov 27.
Although the antioxidant property of vitamin C is well-known for protecting cells from oxidative stress, a recent study shows that it can also generate oxidative stress under a high intracellular concentration and induce cell death. However, poor chemical stability and low biological concentration (micromolar) of vitamin C restrict its function primarily as an antioxidant. Here, we report two different nanoparticle forms of vitamin C with its intact chemical stability, glucose-responsive release from nanoparticle, and efficient cell delivery in micro to millimolar concentrations. Nanoparticles are composed of silica-coated Au nanoparticles or lipophilic polyaspartic acid-based polymer micelles which are conjugated with vitamin C via phenylboronic acid. Surface chemistry of nanoparticles is optimized for an efficient cellular interaction/uptake and for cell delivery of vitamin C. We found that vitamin C protects cells from oxidative stress at micromolar concentrations, but at millimolar concentrations, it induces cell death by generating oxidative stress. In particular, high-dose vitamin C produces HO, disrupts the cellular redox balance, and induces cell death. This study highlights the concentration-dependent biological performance of vitamin C and the requirement of a high-dose cell delivery approach for enhanced therapeutic benefit.
尽管维生素 C 的抗氧化特性是众所周知的,可以保护细胞免受氧化应激,但最近的一项研究表明,它在高细胞内浓度下也会产生氧化应激,并诱导细胞死亡。然而,维生素 C 的化学稳定性差和生物浓度低(微摩尔)限制了其主要作为抗氧化剂的功能。在这里,我们报告了两种不同形式的纳米维生素 C,其具有完整的化学稳定性、从纳米颗粒中葡萄糖响应性释放以及在微至毫摩尔浓度下的有效细胞递送。纳米颗粒由涂有硅的金纳米颗粒或亲脂性聚天冬氨酸基聚合物胶束组成,通过苯硼酸与维生素 C 连接。纳米颗粒的表面化学性质经过优化,可实现高效的细胞相互作用/摄取和维生素 C 的细胞递送。我们发现,维生素 C 在微摩尔浓度下可以保护细胞免受氧化应激,但在毫摩尔浓度下,它会通过产生氧化应激诱导细胞死亡。特别是,高剂量的维生素 C 会产生 HO,破坏细胞的氧化还原平衡,并诱导细胞死亡。本研究强调了维生素 C 的浓度依赖性生物学性能,以及需要高剂量的细胞输送方法来增强治疗效果。