Department of Geology & Geophysics, Texas A&M University , College Station, Texas.
Astrobiology. 2017 Nov;17(11):1161-1172. doi: 10.1089/ast.2016.1494.
As part of its biosignature detection package, the Mars 2020 rover will carry PIXL, the Planetary Instrument for X-ray Lithochemistry, a spatially resolved X-ray fluorescence (μXRF) spectrometer. Understanding the types of biosignatures detectable by μXRF and the rock types μXRF is most effective at analyzing is therefore an important goal in preparation for in situ Mars 2020 science and sample selection. We tested mesoscale chemical mapping for biosignature interpretation in microbialites. In particular, we used μXRF to identify spatial distributions and associations between various elements ("fluorescence microfacies") to infer the physical, biological, and chemical processes that produced the observed compositional distributions. As a test case, elemental distributions from μXRF scans of stromatolites from the Mesoarchean Nsuze Group (2.98 Ga) were analyzed. We included five fluorescence microfacies: laminated dolostone, laminated chert, clotted dolostone and chert, stromatolite clast breccia, and cavity fill. Laminated dolostone was formed primarily by microbial mats that trapped and bound loose sediment and likely precipitated carbonate mud at a shallow depth below the mat surface. Laminated chert was produced by the secondary silicification of microbial mats. Clotted dolostone and chert grew as cauliform, cryptically laminated mounds similar to younger thrombolites and was likely formed by a combination of mat growth and patchy precipitation of early-formed carbonate. Stromatolite clast breccias formed as lag deposits filling erosional scours and interstromatolite spaces. Cavities were filled by microquartz, Mn-rich dolomite, and partially dolomitized calcite. Overall, we concluded that μXRF is effective for inferring genetic processes and identifying biosignatures in compositionally heterogeneous rocks. Key Words: Stromatolites-Biosignatures-Spectroscopy-Archean. Astrobiology 17, 1161-1172.
作为其生物特征检测包的一部分,火星 2020 漫游车将携带 PIXL,即行星 X 射线化学物质成像仪,这是一种空间分辨 X 射线荧光(μXRF)光谱仪。因此,了解μXRF 可检测到的生物特征类型以及μXRF 最有效地分析的岩石类型是为火星 2020 年原位科学和样本选择做准备的一个重要目标。我们测试了微生物岩中用于生物特征解释的中尺度化学绘图。特别是,我们使用μXRF 来识别各种元素(“荧光相”)之间的空间分布和关联,以推断产生观察到的成分分布的物理、生物和化学过程。作为一个测试案例,我们分析了来自 Mesoarchean Nsuze 组(29.8 亿年)的叠层石的μXRF 扫描的元素分布。我们包括五个荧光相:纹层白云岩、纹层燧石、凝块白云岩和燧石、叠层石碎屑角砾岩和空洞填充物。纹层白云岩主要由微生物席形成,微生物席捕获和束缚松散沉积物,并可能在席表面以下的浅层沉淀碳酸盐泥。纹层燧石是由微生物席的次生硅化作用产生的。凝块白云岩和燧石呈柱状、隐纹层状的丘状生长,类似于年轻的血栓,可能是由席的生长和早期形成的碳酸盐的斑状沉淀相结合形成的。叠层石碎屑角砾岩作为填充侵蚀冲刷和叠层石之间空间的滞后沉积物形成。空洞被微石英、富 Mn 的白云石和部分白云化方解石填充。总的来说,我们得出结论,μXRF 可有效地推断遗传过程并识别成分不均匀的岩石中的生物特征。关键词:叠层石-生物特征-光谱学-太古代。天体生物学 17, 1161-1172。