Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, Rhode Island, USA.
Department of Geosciences, Stony Brook University, Stony Brook, New York, USA.
Astrobiology. 2023 May;23(5):477-495. doi: 10.1089/ast.2022.0103. Epub 2023 Mar 21.
Accurate interpretation of the martian sedimentary rock record-and by extension that planet's paleoenvironmental history and potential habitability-relies heavily on rover-based acquisition of textural and compositional data and researchers to properly interpret those data. However, the degree to which this type of remotely sensed information can be unambiguously resolved and accurately linked to geological processes in ancient sedimentary systems warrants further study. In this study, we characterize Mars-relevant siliciclastic-evaporite samples by traditional laboratory-based geological methods (thin section petrography, X-ray diffraction [XRD], backscattered electron imaging, microprobe chemical analyses) and remote sensing methods relevant to martian rover payloads (visible-near-mid infrared reflectance spectroscopy, X-ray fluorescence mapping, XRD). We assess each method's ability to resolve primary and secondary sedimentologic features necessary for the accurate interpretation of paleoenvironmental processes. While the most dominant textures and associated compositions ( bedded gypsum evaporite) of the sample suite are readily identified by a combination of remote sensing techniques, equally important, although more subtle, components ( interbedded windblown silt, meniscus cements) are not resolved unambiguously in bulk samples. However, rover-based techniques capable of coordinating spatially resolved compositional measurements with textural imaging reveal important features not readily detected using traditional assessments ( subtle clay-organic associations, microscale diagenetic nodules). Our findings demonstrate the improved generational capacity of rovers to explore ancient sedimentary environments on Mars while also highlighting the complexities in extracting comprehensive paleoenvironmental information when limited to currently available rover-based techniques. Complete and accurate interpretation of ancient martian sedimentary environments, and by extension the habitability of those environments, likely requires sample return or human exploration. Plain Language Summary Key Points Mars-relevant samples are characterized using both traditional laboratory and microscale rover-based remote sensing techniques to assess each method's ability to recognize features necessary for accurate paleoenvironmental process interpretation. While some key paleoenvironmental processes can reasonably be inferred via remote sensing methods, others cannot be resolved unambiguously. Perseverance Rover's Planetary Instrument for X-Ray Lithochemistry instrument reveals diagenetic features that would otherwise remain unseen by traditional thin section petrography.
准确解读火星沉积岩记录——进而扩展到该行星的古环境历史和潜在可居住性——严重依赖于基于漫游车的纹理和成分数据的获取,以及研究人员对这些数据的正确解释。然而,这种类型的遥感信息在多大程度上可以被明确解析,并准确地与古代沉积系统中的地质过程相关联,这需要进一步研究。在这项研究中,我们通过传统的基于实验室的地质方法(薄片岩矿鉴定、X 射线衍射[XRD]、背散射电子成像、微探针化学分析)和与火星漫游车有效载荷相关的遥感方法来描述与火星相关的硅质-蒸发岩样本(可见光-近中红外反射光谱、X 射线荧光测绘、XRD)。我们评估了每种方法解析准确解释古环境过程所需的主要和次要沉积学特征的能力。虽然遥感技术组合可以轻松识别样本套件中最主要的纹理和相关成分(层状石膏蒸发岩),但同样重要的是,尽管更细微,但在大块样本中无法明确解析更细微的成分(交错风成粉砂、新月形胶结物)。然而,能够协调空间分辨率成分测量与纹理成像的漫游车基技术揭示了使用传统评估方法不易检测到的重要特征(细微的粘土-有机组合、微尺度成岩结核)。我们的研究结果表明,漫游车在探索火星古代沉积环境方面的代际能力得到了提高,同时也突出了在目前可用的漫游车基技术的限制下提取全面古环境信息的复杂性。对古老火星沉积环境的完整和准确解释,进而对这些环境的可居住性的解释,可能需要样本返回或人类探索。 普通语言摘要 要点 使用传统的实验室和微观漫游车基遥感技术对与火星相关的样本进行了描述,以评估每种方法识别准确的古环境过程解释所需特征的能力。虽然一些关键的古环境过程可以通过遥感方法合理推断,但其他过程无法明确解析。毅力号火星车的行星 X 射线岩石化学仪器揭示了否则将通过传统薄片岩矿鉴定无法发现的成岩特征。