Max Planck Institute for Polymer Research , Ackermannweg 10, 55128, Mainz, Germany.
NanoBioMedical Centre, Adam Mickiewicz University , Umultowska 85, 61614 Poznan, Poland.
Nano Lett. 2017 Dec 13;17(12):7647-7651. doi: 10.1021/acs.nanolett.7b03669. Epub 2017 Nov 17.
The performance gain-oriented nanostructurization has opened a new pathway for tuning mechanical features of solid matter vital for application and maintained performance. Simultaneously, the mechanical evaluation has been pushed down to dimensions way below 1 μm. To date, the most standard technique to study the mechanical properties of suspended 2D materials is based on nanoindentation experiments. In this work, by means of micro-Brillouin light scattering we determine the mechanical properties, that is, Young modulus and residual stress, of polycrystalline few nanometers thick MoS membranes in a simple, contact-less, nondestructive manner. The results show huge elastic softening compared to bulk MoS, which is correlated with the sample morphology and the residual stress.
面向性能提升的纳米结构化开辟了一条新途径,可以调节对应用和维持性能至关重要的固体物质的机械特性。同时,机械评估已经推进到低于 1 μm 的尺寸。迄今为止,研究悬浮二维材料机械性能最标准的技术是基于纳米压痕实验。在这项工作中,我们通过微布里渊光散射以简单、非接触、无损的方式确定了多晶几纳米厚 MoS 膜的力学性能,即杨氏模量和残余应力。结果表明,与块状 MoS 相比,弹性软化程度很大,这与样品形态和残余应力有关。