Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Geography and Environment Science, Northwest Normal University, Lanzhou 730070, PR China.
College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China.
Talanta. 2018 Feb 1;178:315-323. doi: 10.1016/j.talanta.2017.09.047. Epub 2017 Sep 19.
In this work, a novel nanohybrid (AuPtNPs/S-NS-GR) of well-defined Au-Pt bimetallic nanoparticles (Au-PtNPs) decorated on sulfonated nitrogen sulfur co-doped graphene (S-NS-GR) was developed. Firstly, nitrogen sulfur co-doped graphene (NS-GR) was synthesized by one-step thermal annealing method. Secondly, phenyl SOH- group was introduced onto the surface of NS-GR via diazotization reaction, which could provide more binding sites for the formation of metal nanoparticles. Finally, Au-Pt bimetallic nanoparticles were anchored on the surface of S-NS-GR by using electrochemical deposition. The prepared material was characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDS), Raman spectroscopy and electrochemical impedance spectra (EIS). In addition, the electrocatalytic activity towards dopamine (DA) and uric acid (UA) was systematically studied by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. Under optimum conditions, the linear ranges for the detection of DA and UA were 1.0×10 - 4.0×10 M and 1.0×10 - 1.0×10 M with the limits of detection (LOD, S/N = 3) of 0.006μM and 0.038μM, respectively. Furthermore, the modified electrode was applied to real sample analysis.
在这项工作中,开发了一种新型的纳米杂化材料(AuPtNPs/S-NS-GR),它由负载在磺化氮硫共掺杂石墨烯(S-NS-GR)上的具有明确结构的 Au-Pt 双金属纳米粒子(Au-PtNPs)组成。首先,通过一步热退火法合成氮硫共掺杂石墨烯(NS-GR)。其次,通过重氮化反应将苯基 SOH-基团引入 NS-GR 表面,这为金属纳米颗粒的形成提供了更多的结合位点。最后,通过电化学沉积将 Au-Pt 双金属纳米粒子锚定在 S-NS-GR 表面。通过扫描电子显微镜(SEM)、X 射线光电子能谱(XPS)、能量色散 X 射线能谱(EDS)、拉曼光谱和电化学阻抗谱(EIS)对所制备的材料进行了表征。此外,通过循环伏安法(CV)和差分脉冲伏安法(DPV)技术系统地研究了其对多巴胺(DA)和尿酸(UA)的电催化活性。在最佳条件下,DA 和 UA 的检测线性范围分别为 1.0×10 - 4.0×10 M 和 1.0×10 - 1.0×10 M,检测限(LOD,S/N = 3)分别为 0.006μM 和 0.038μM。此外,将修饰电极应用于实际样品分析。