Suppr超能文献

基于分子对接结合机器学习评分函数的虚拟筛选方法鉴定流感病毒神经氨酸酶抑制剂

Virtual screening approach to identifying influenza virus neuraminidase inhibitors using molecular docking combined with machine-learning-based scoring function.

作者信息

Zhang Li, Ai Hai-Xin, Li Shi-Meng, Qi Meng-Yuan, Zhao Jian, Zhao Qi, Liu Hong-Sheng

机构信息

School of Life Science, Liaoning University, Shenyang 110036, China.

Research Center for Computer Simulating and Information Processing of Bio-macromolecules of Liaoning Province, Shenyang 110036, China.

出版信息

Oncotarget. 2017 Sep 15;8(47):83142-83154. doi: 10.18632/oncotarget.20915. eCollection 2017 Oct 10.

Abstract

In recent years, an epidemic of the highly pathogenic avian influenza H7N9 virus has persisted in China, with a high mortality rate. To develop novel anti-influenza therapies, we have constructed a machine-learning-based scoring function (RF-NA-Score) for the effective virtual screening of lead compounds targeting the viral neuraminidase (NA) protein. RF-NA-Score is more accurate than RF-Score, with a root-mean-square error of 1.46, Pearson's correlation coefficient of 0.707, and Spearman's rank correlation coefficient of 0.707 in a 5-fold cross-validation study. The performance of RF-NA-Score in a docking-based virtual screening of NA inhibitors was evaluated with a dataset containing 281 NA inhibitors and 322 noninhibitors. Compared with other docking-rescoring virtual screening strategies, rescoring with RF-NA-Score significantly improved the efficiency of virtual screening, and a strategy that averaged the scores given by RF-NA-Score, based on the binding conformations predicted with AutoDock, AutoDock Vina, and LeDock, was shown to be the best strategy. This strategy was then applied to the virtual screening of NA inhibitors in the SPECS database. The 100 selected compounds were tested in an H7N9 NA inhibition assay, and two compounds with novel scaffolds showed moderate inhibitory activities. These results indicate that RF-NA-Score improves the efficiency of virtual screening for NA inhibitors, and can be used successfully to identify new NA inhibitor scaffolds. Scoring functions specific for other drug targets could also be established with the same method.

摘要

近年来,高致病性禽流感H7N9病毒在中国持续流行,死亡率很高。为了开发新型抗流感疗法,我们构建了一种基于机器学习的评分函数(RF-NA-Score),用于有效虚拟筛选靶向病毒神经氨酸酶(NA)蛋白的先导化合物。在一项5折交叉验证研究中,RF-NA-Score比RF-Score更准确,均方根误差为1.46,皮尔逊相关系数为0.707,斯皮尔曼等级相关系数为0.707。使用包含281种NA抑制剂和322种非抑制剂的数据集评估了RF-NA-Score在基于对接的NA抑制剂虚拟筛选中的性能。与其他对接重评分虚拟筛选策略相比,使用RF-NA-Score进行重评分显著提高了虚拟筛选的效率,并且基于AutoDock、AutoDock Vina和LeDock预测的结合构象对RF-NA-Score给出的分数进行平均的策略被证明是最佳策略。然后将该策略应用于SPECS数据库中NA抑制剂的虚拟筛选。对筛选出的100种化合物进行了H7N9 NA抑制试验,两种具有新型骨架的化合物表现出中等抑制活性。这些结果表明,RF-NA-Score提高了NA抑制剂虚拟筛选的效率,并可成功用于鉴定新的NA抑制剂骨架。也可以用相同的方法建立针对其他药物靶点的评分函数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9056/5669956/1bb74eb88732/oncotarget-08-83142-g001.jpg

相似文献

2
Discovery of Influenza A virus neuraminidase inhibitors using support vector machine and Naïve Bayesian models.
Mol Divers. 2016 May;20(2):439-51. doi: 10.1007/s11030-015-9641-z. Epub 2015 Dec 21.
5
A New, Improved Hybrid Scoring Function for Molecular Docking and Scoring Based on AutoDock and AutoDock Vina.
Chem Biol Drug Des. 2016 Apr;87(4):618-25. doi: 10.1111/cbdd.12697. Epub 2015 Dec 29.
6
Machine learning in computational docking.
Artif Intell Med. 2015 Mar;63(3):135-52. doi: 10.1016/j.artmed.2015.02.002. Epub 2015 Feb 16.
7
10
Vinardo: A Scoring Function Based on Autodock Vina Improves Scoring, Docking, and Virtual Screening.
PLoS One. 2016 May 12;11(5):e0155183. doi: 10.1371/journal.pone.0155183. eCollection 2016.

引用本文的文献

3
Building shape-focused pharmacophore models for effective docking screening.
J Cheminform. 2024 Aug 9;16(1):97. doi: 10.1186/s13321-024-00857-6.
4
Benchmarking ANI potentials as a rescoring function and screening FDA drugs for SARS-CoV-2 M.
J Comput Aided Mol Des. 2024 Mar 27;38(1):15. doi: 10.1007/s10822-024-00554-4.
5
Antiviral Approaches against Influenza Virus.
Clin Microbiol Rev. 2023 Mar 23;36(1):e0004022. doi: 10.1128/cmr.00040-22. Epub 2023 Jan 16.
6
Disease-Ligand Identification Based on Flexible Neural Tree.
Front Microbiol. 2022 Jun 6;13:912145. doi: 10.3389/fmicb.2022.912145. eCollection 2022.
7
Detection and Prevention of Virus Infection.
Adv Exp Med Biol. 2022;1368:21-52. doi: 10.1007/978-981-16-8969-7_2.
10
Robotics and artificial intelligence in healthcare during COVID-19 pandemic: A systematic review.
Rob Auton Syst. 2021 Dec;146:103902. doi: 10.1016/j.robot.2021.103902. Epub 2021 Oct 6.

本文引用的文献

2
Machine Learning Consensus Scoring Improves Performance Across Targets in Structure-Based Virtual Screening.
J Chem Inf Model. 2017 Jul 24;57(7):1579-1590. doi: 10.1021/acs.jcim.7b00153. Epub 2017 Jul 12.
3
Novel influenza A viruses and pandemic threats.
Lancet. 2017 Jun 3;389(10085):2172-2174. doi: 10.1016/S0140-6736(17)31274-6.
5
Sudden increase in human infection with avian influenza A(H7N9) virus in China, September-December 2016.
Western Pac Surveill Response J. 2017 Jan 18;8(1):6-14. doi: 10.5365/WPSAR.2017.8.1.001. eCollection 2017 Jan-Mar.
6
Forging the Basis for Developing Protein-Ligand Interaction Scoring Functions.
Acc Chem Res. 2017 Feb 21;50(2):302-309. doi: 10.1021/acs.accounts.6b00491. Epub 2017 Feb 9.
7
A Systematic Prediction of Drug-Target Interactions Using Molecular Fingerprints and Protein Sequences.
Curr Protein Pept Sci. 2018;19(5):468-478. doi: 10.2174/1389203718666161122103057.
9
HGIMDA: Heterogeneous graph inference for miRNA-disease association prediction.
Oncotarget. 2016 Oct 4;7(40):65257-65269. doi: 10.18632/oncotarget.11251.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验