Suppr超能文献

具有稀疏先验的磁化率映射的快速两步偶极子反演。

Rapid two-step dipole inversion for susceptibility mapping with sparsity priors.

机构信息

UBC MRI Research Centre, University of British Columbia, M10 Purdy Pavilion, 2221 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada; Department of Physics & Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC, V6T 1Z1, Canada.

UBC MRI Research Centre, University of British Columbia, M10 Purdy Pavilion, 2221 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada; Department of Physics & Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC, V6T 1Z1, Canada; Department of Pediatrics (Division of Neurology), University of British Columbia, 4480 Oak Street, BC Children's Hospital, Vancouver, BC, V6H 3V4, Canada.

出版信息

Neuroimage. 2018 Feb 15;167:276-283. doi: 10.1016/j.neuroimage.2017.11.018. Epub 2017 Nov 11.

Abstract

Quantitative susceptibility mapping (QSM) is a post-processing technique of gradient echo phase data that attempts to map the spatial distribution of local tissue magnetic susceptibilities. To obtain these maps, an ill-posed field-to-source inverse problem must be solved to remove non-local magnetic field perturbations. Current state-of-the-art algorithms which aim to solve the dipole inversion problem are plagued by the trade-off between reconstruction speed and accuracy. A two-step dipole inversion algorithm is proposed to bridge this gap. Our approach first addresses the well-conditioned k-space region, which is reconstructed using a Krylov subspace solver. Then the ill-conditioned k-space region is reconstructed by solving a constrained l-minimization problem. The proposed pipeline does not incorporate a priori information, but utilizes sparsity constraints in the second step. We compared our method to well-established QSM algorithms with respect to COSMOS in in vivo volunteer datasets. Compared to MEDI and HEIDI the proposed algorithm produces susceptibility maps with a lower root-mean-square error and a higher coefficient of determination, with respect to COSMOS, while being 50 times faster. Our two-step dipole inversion algorithm without a priori information yields improved QSM reconstruction quality at reduced computation times compared to current state-of-the-art methods.

摘要

定量磁敏感图(QSM)是一种梯度回波相位数据的后处理技术,旨在绘制局部组织磁化率的空间分布。为了获得这些图谱,必须解决一个不适定的场到源逆问题,以消除非局部磁场干扰。目前,旨在解决偶极子反演问题的最先进算法受到重建速度和准确性之间权衡的困扰。提出了一种两步偶极子反演算法来弥合这一差距。我们的方法首先解决了条件良好的 k 空间区域,该区域使用 Krylov 子空间求解器进行重建。然后,通过求解约束 l 最小化问题来重建不适定的 k 空间区域。所提出的流水线不包含先验信息,但在第二步中利用稀疏性约束。我们将我们的方法与体内志愿者数据集的成熟的 QSM 算法进行了比较。与 MEDI 和 HEIDI 相比,与 COSMOS 相比,所提出的算法产生的磁化率图的均方根误差更低,决定系数更高,而速度则快 50 倍。与当前最先进的方法相比,我们提出的两步无先验信息的偶极子反演算法在减少计算时间的同时提高了 QSM 重建质量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验