Institute for Structural Neurobiology, Center for Molecular Neurobiology (ZMNH), 20251 Hamburg, Germany.
Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.
J Neurosci. 2018 Jan 3;38(1):137-148. doi: 10.1523/JNEUROSCI.0988-17.2017. Epub 2017 Nov 14.
Reelin controls neuronal migration and layer formation. Previous studies in mice deficient in Reelin focused on the result of the developmental process in fixed tissue sections. It has remained unclear whether Reelin affects the migratory process, migration directionality, or migrating neurons guided by the radial glial scaffold. Moreover, Reelin has been regarded as an attractive signal because newly generated neurons migrate toward the Reelin-containing marginal zone. Conversely, Reelin might be a stop signal because migrating neurons in , but not in wild-type mice, invade the marginal zone. Here, we monitored the migration of newly generated -expressing dentate granule cells in slice cultures from , -like mutants and wild-type mice of either sex using real-time microscopy. We discovered that not the actual migratory process and migratory speed, but migration directionality of the granule cells is controlled by Reelin. While wild-type granule cells migrated toward the marginal zone of the dentate gyrus, neurons in cultures from and -like mutants migrated randomly in all directions as revealed by vector analyses of migratory trajectories. Moreover, live imaging of granule cells in slices cocultured to wild-type dentate gyrus showed that the neurons changed their directions and migrated toward the Reelin-containing marginal zone of the wild-type culture, thus forming a compact granule cell layer. In contrast, directed migration was not observed when Reelin was ubiquitously present in the medium of slices. These results indicate that topographically administered Reelin controls the formation of a granule cell layer. Neuronal migration and the various factors controlling its onset, speed, directionality, and arrest are poorly understood. Slice cultures offer a unique model to study the migration of individual neurons in an almost natural environment. In the present study, we took advantage of the expression of by newly generated, migrating granule cells to analyze their migratory trajectories in hippocampal slice cultures from wild-type mice and mutants deficient in Reelin signaling. We show that the compartmentalized presence of Reelin is essential for the directionality, but not the actual migratory process or speed, of migrating granule cells leading to their characteristic lamination in the dentate gyrus.
Reelin 控制神经元的迁移和层形成。以前在 Reelin 缺陷小鼠中的研究主要集中在固定组织切片中发育过程的结果上。目前尚不清楚 Reelin 是否会影响迁移过程、迁移方向性或受放射状胶质支架引导的迁移神经元。此外,Reelin 一直被视为一种有吸引力的信号,因为新生成的神经元会向含有 Reelin 的边缘区迁移。相反,Reelin 可能是一种停止信号,因为在 ,而不是在野生型小鼠中,迁移神经元会侵入边缘区。在这里,我们使用实时显微镜监测来自 、Reelin 样突变体和雄性或雌性野生型小鼠切片培养物中新生成的 -表达的颗粒细胞的迁移。我们发现,不是实际的迁移过程和迁移速度,而是颗粒细胞的迁移方向性受 Reelin 控制。虽然野生型颗粒细胞向齿状回的边缘区迁移,但来自 和 Reelin 样突变体的神经元在迁移轨迹的向量分析中以所有方向随机迁移。此外,在与野生型齿状回共培养的 切片中对颗粒细胞进行实时成像显示, 神经元改变了它们的方向并向野生型培养物中含有 Reelin 的边缘区迁移,从而形成了一个致密的颗粒细胞层。相比之下,当 Reelin 在 切片的培养基中普遍存在时,没有观察到定向迁移。这些结果表明,地形施用的 Reelin 控制颗粒细胞层的形成。神经元迁移及其起始、速度、方向性和阻滞的各种因素知之甚少。切片培养提供了一个独特的模型,可以在几乎自然的环境中研究单个神经元的迁移。在本研究中,我们利用新生成的、迁移的颗粒细胞中 的表达,分析它们在来自野生型小鼠和 Reelin 信号缺失突变体的海马切片培养物中的迁移轨迹。我们表明,Reelin 的分区存在对于迁移颗粒细胞的方向性是必不可少的,但对于实际的迁移过程或速度不是必需的,这导致它们在齿状回中的特征分层。