Neurobiology Section, Division of Biological Sciences, University of California, San Diego, San Diego, United States.
Elife. 2017 Nov 15;6:e30327. doi: 10.7554/eLife.30327.
Several techniques have been developed to manipulate gene expression temporally in intact neural circuits. However, the applicability of current tools developed for in vivo studies in is limited by their incompatibility with existing GAL4 lines and side effects on physiology and behavior. To circumvent these limitations, we adopted a strategy to reversibly regulate protein degradation with a small molecule by using a destabilizing domain (DD). We show that this system is effective across different tissues and developmental stages. We further show that this system can be used to control in vivo gene expression levels with low background, large dynamic range, and in a reversible manner without detectable side effects on the lifespan or behavior of the animal. Additionally, we engineered tools for chemically controlling gene expression (GAL80-DD) and recombination (FLP-DD). We demonstrate the applicability of this technology in manipulating neuronal activity and for high-efficiency sparse labeling of neuronal populations.
已经开发出几种技术来在完整的神经回路中对基因表达进行时间上的操作。然而,目前为体内研究开发的工具在应用上受到限制,因为它们与现有的 GAL4 系不兼容,并且对生理和行为有副作用。为了规避这些限制,我们采用了一种策略,通过使用不稳定域 (DD) 用小分子可逆地调节蛋白质降解。我们表明,该系统在不同组织和发育阶段都有效。我们进一步表明,该系统可以用于以低背景、大动态范围和可逆的方式控制体内基因表达水平,而对动物的寿命或行为没有可检测到的副作用。此外,我们设计了用于化学控制基因表达(GAL80-DD)和重组(FLP-DD)的工具。我们证明了这项技术在操纵神经元活动和高效稀疏标记神经元群体方面的适用性。