Suppr超能文献

用于动态微生物相互作用网络的高维线性状态空间模型。

High-dimensional linear state space models for dynamic microbial interaction networks.

作者信息

Chen Iris, Kelkar Yogeshwar D, Gu Yu, Zhou Jie, Qiu Xing, Wu Hulin

机构信息

Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY 14642, United States of America.

Department of Biology, University of Rochester, Rochester, NY 14642, United States of America.

出版信息

PLoS One. 2017 Nov 15;12(11):e0187822. doi: 10.1371/journal.pone.0187822. eCollection 2017.

Abstract

Medical researchers are increasingly interested in knowing how the complex community of micro-organisms living on human body impacts human health. Key to this is to understand how the microbes interact with each other. Time-course studies on human microbiome indicate that the composition of microbiome changes over short time periods, primarily as a consequence of synergistic and antagonistic interactions of the members of the microbiome with each other and with the environment. Knowledge of the abundance of bacteria-which are the predominant members of the human microbiome-in such time-course studies along with appropriate mathematical models will allow us to identify key dynamic interaction networks within the microbiome. However, the high-dimensional nature of these data poses significant challenges to the development of such mathematical models. We propose a high-dimensional linear State Space Model (SSM) with a new Expectation-Regularization-Maximization (ERM) algorithm to construct a dynamic Microbial Interaction Network (MIN). System noise and measurement noise can be separately specified through SSMs. In order to deal with the problem of high-dimensional parameter space in the SSMs, the proposed new ERM algorithm employs the idea of the adaptive LASSO-based variable selection method so that the sparsity property of MINs can be preserved. We performed simulation studies to evaluate the proposed ERM algorithm for variable selection. The proposed method is applied to identify the dynamic MIN from a time-course vaginal microbiome study of women. This method is amenable to future developments, which may include interactions between microbes and the environment.

摘要

医学研究人员越来越关注生活在人体上的复杂微生物群落如何影响人类健康。关键在于了解这些微生物如何相互作用。对人类微生物组的时间进程研究表明,微生物组的组成在短时间内会发生变化,这主要是微生物组成员之间以及与环境之间协同和拮抗相互作用的结果。在这类时间进程研究中,了解作为人类微生物组主要成员的细菌丰度,并结合适当的数学模型,将使我们能够识别微生物组内关键的动态相互作用网络。然而,这些数据的高维性质给此类数学模型的开发带来了重大挑战。我们提出了一种具有新的期望正则化最大化(ERM)算法的高维线性状态空间模型(SSM),以构建动态微生物相互作用网络(MIN)。系统噪声和测量噪声可以通过状态空间模型分别指定。为了处理状态空间模型中高维参数空间的问题,提出的新ERM算法采用了基于自适应套索变量选择方法的思想,以便能够保留微生物相互作用网络的稀疏特性。我们进行了模拟研究,以评估所提出的用于变量选择的ERM算法。所提出的方法应用于从女性阴道微生物组的时间进程研究中识别动态微生物相互作用网络。该方法适合未来的发展,可能包括微生物与环境之间的相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4d7/5687744/f4aabc717540/pone.0187822.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验