Suppr超能文献

统计方法在微生物组组成数据网络推断中的应用:综述。

Statistical Methods for Microbiome Compositional Data Network Inference: A Survey.

机构信息

School of Mathematical Sciences, Peking University, Beijing, China.

Center for Statistical Science, Peking University, Beijing, China.

出版信息

J Comput Biol. 2022 Jul;29(7):704-723. doi: 10.1089/cmb.2021.0406. Epub 2022 Apr 11.

Abstract

Microbes can be found almost everywhere in the world. They are not isolated, but rather interact with each other and establish connections with their living environments. Studying these interactions is essential to an understanding of the organization and complex interplay of microbial communities, as well as the structure and dynamics of various ecosystems. A widely used approach toward this objective involves the inference of microbiome interaction networks. However, owing to the compositional, high-dimensional, sparse, and heterogeneous nature of observed microbial data, applying network inference methods to estimate their associations is challenging. In addition, external environmental interference and biological concerns also make it more difficult to deal with the network inference. In this article, we provide a comprehensive review of emerging microbiome interaction network inference methods. According to various research targets, estimated networks are divided into four main categories: correlation networks, conditional correlation networks, mixture networks, and differential networks. Their assumptions, high-level ideas, advantages, as well as limitations, are presented in this review. Since real microbial interactions can be complex and dynamic, no unifying method has, to date, captured all the aspects of interest. In addition, we discuss the challenges now confronting current microbial interaction study and future prospects. Finally, we point out several feasible directions of microbial network inference analysis and highlight that future research requires the joint promotion of statistical computation methods and experimental techniques.

摘要

微生物几乎无处不在。它们不是孤立的,而是相互作用,并与它们的生活环境建立联系。研究这些相互作用对于理解微生物群落的组织和复杂相互作用,以及各种生态系统的结构和动态至关重要。实现这一目标的一种广泛使用的方法是推断微生物组相互作用网络。然而,由于观察到的微生物数据具有组成性、高维性、稀疏性和异质性,因此应用网络推断方法来估计它们的关联具有挑战性。此外,外部环境干扰和生物问题也使得网络推断更加困难。在本文中,我们提供了对新兴微生物相互作用网络推断方法的全面综述。根据各种研究目标,估计网络分为四大类:相关网络、条件相关网络、混合网络和差异网络。本文综述了它们的假设、高级思想、优点和局限性。由于真实的微生物相互作用可能是复杂和动态的,因此到目前为止,还没有一种统一的方法能够捕捉到所有感兴趣的方面。此外,我们还讨论了当前微生物相互作用研究面临的挑战和未来的展望。最后,我们指出了微生物网络推断分析的几个可行方向,并强调未来的研究需要统计计算方法和实验技术的共同推动。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验