Hu Bei Lok, Verdaguer Enric
Department of Physics, University of Maryland, College Park, 20742-4111 Maryland USA.
Departament de Fisica Fonamental and C.E.R. in Astrophysics, Particles and Cosmology Universitat de Barcelona, Av. Diagonal 647, 08028 Barcelona, Spain.
Living Rev Relativ. 2004;7(1):3. doi: 10.12942/lrr-2004-3. Epub 2004 Mar 11.
Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel. The noise kernel is the vacuum expectation value of the (operatorvalued) stress-energy bi-tensor which describes the fluctuations of quantum matter fields in curved spacetimes. In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. The axiomatic approach is useful to see the structure of the theory from the framework of semiclassical gravity, showing the link from the mean value of the stress-energy tensor to their correlation functions. The functional approach uses the Feynman-Vernon influence functional and the Schwinger-Keldysh closed-time-path effective action methods which are convenient for computations. It also brings out the open systems concepts and the statistical and stochastic contents of the theory such as dissipation, fluctuations, noise, and decoherence. We then focus on the properties of the stress-energy bi-tensor. We obtain a general expression for the noise kernel of a quantum field defined at two distinct points in an arbitrary curved spacetime as products of covariant derivatives of the quantum field's Green function. In the second part, we describe three applications of stochastic gravity theory. First, we consider metric perturbations in a Minkowski spacetime. We offer an analytical solution of the Einstein-Langevin equation and compute the two-point correlation functions for the linearized Einstein tensor and for the metric perturbations. Second, we discuss structure formation from the stochastic gravity viewpoint, which can go beyond the standard treatment by incorporating the full quantum effect of the inflaton fluctuations. Third, we discuss the backreaction of Hawking radiation in the gravitational background of a quasi-static black hole (enclosed in a box). We derive a fluctuation-dissipation relation between the fluctuations in the radiation and the dissipative dynamics of metric fluctuations.
半经典引力基于半经典爱因斯坦方程,其源由量子场的应力 - 能量张量的期望值给出,而随机半经典引力基于爱因斯坦 - 朗之万方程,该方程除了有源自噪声核的源之外,还有其他源。噪声核是(算符值的)应力 - 能量双张量的真空期望值,它描述了弯曲时空中量子物质场的涨落。在第一部分,我们通过两种方法描述这个新理论的基础:公理方法和泛函方法。公理方法有助于从半经典引力的框架来看该理论的结构,展示从应力 - 能量张量的平均值到其关联函数的联系。泛函方法使用费曼 - 弗农影响泛函和施温格 - 凯尔迪什闭时路径有效作用方法,这便于计算。它还引出了开放系统概念以及该理论的统计和随机内容,如耗散、涨落、噪声和退相干。然后我们关注应力 - 能量双张量的性质。我们得到了在任意弯曲时空中两个不同点定义的量子场的噪声核的一般表达式,它是量子场格林函数的协变导数的乘积。在第二部分,我们描述随机引力理论的三个应用。首先,我们考虑闵可夫斯基时空中的度规微扰。我们给出爱因斯坦 - 朗之万方程的解析解,并计算线性化爱因斯坦张量和度规微扰的两点关联函数。其次,我们从随机引力的观点讨论结构形成,这可以通过纳入暴胀子涨落的全量子效应超越标准处理。第三,我们讨论在准静态黑洞(封闭在一个盒子中)的引力背景下霍金辐射的反作用。我们推导了辐射涨落与度规涨落的耗散动力学之间的涨落 - 耗散关系。