Haba Zbigniew
Institute of Theoretical Physics, University of Wroclaw, Plac Maxa Borna 9, 50-204 Wroclaw, Poland.
Entropy (Basel). 2024 Apr 12;26(4):329. doi: 10.3390/e26040329.
We study the Schrödinger equation in quantum field theory (QFT) in its functional formulation. In this approach, quantum correlation functions can be expressed as classical expectation values over (complex) stochastic processes. We obtain a stochastic representation of the Schrödinger time evolution on Wentzel-Kramers-Brillouin (WKB) states by means of the Wiener integral. We discuss QFT in a flat expanding metric and in de Sitter space-time. We calculate the evolution kernel in an expanding flat metric in the real-time formulation. We discuss a field interaction in pseudoRiemannian and Riemannian metrics showing that an inversion of the signature leads to some substantial simplifications of the singularity problems in QFT.
我们在量子场论(QFT)的泛函表述中研究薛定谔方程。在这种方法中,量子关联函数可以表示为(复)随机过程上的经典期望值。我们借助维纳积分获得了温策尔 - 克拉默斯 - 布里渊(WKB)态上薛定谔时间演化的随机表示。我们讨论了在平坦膨胀度规和德西特时空下的量子场论。我们在实时表述中计算了膨胀平坦度规下的演化核。我们讨论了伪黎曼和黎曼度规中的场相互作用,表明符号的反转导致量子场论中奇点问题有一些实质性的简化。