Suppr超能文献

磷脂酰丝氨酸和磷脂酰乙醇胺对白色念珠菌法尼醇耐受性的影响。

Influence of phosphatidylserine and phosphatidylethanolamine on farnesol tolerance in Candida albicans.

作者信息

Hasim Sahar, Vaughn Elyse N, Donohoe Dallas, Gordon Donna M, Pfiffner Susan, Reynolds Todd B

机构信息

Department of Microbiology, University of Tennessee, Knoxville, TN, 37996, USA.

Department of Nutrition, University of Tennessee, Knoxville, TN, 37996, USA.

出版信息

Yeast. 2018 Apr;35(4):343-351. doi: 10.1002/yea.3297. Epub 2018 Feb 8.

Abstract

Candida albicans is among the most common human fungal pathogens. The ability to undergo the morphological transition from yeast to hyphal growth is critical for its pathogenesis. Farnesol, a precursor in the isoprenoid/sterol pathway, is a quorum-sensing molecule produced by C. albicans that inhibits hyphal growth in this polymorphic fungus. Interestingly, C. albicans can tolerate farnesol concentrations that are toxic to other fungi. We hypothesized that changes in phospholipid composition are one of the factors contributing to farnesol tolerance in C. albicans. In this study, we found that loss of enzymes that synthesize the phospholipids phosphatidylserine (PS) and/or phosphatidylethanolamine (PE) compromise the tolerance of C. albicans to farnesol. Compared with wild type, the phospholipid mutant cho1∆/∆ (loss of PS and decreased PE synthesis) shows greater inhibition of growth, loss of ATP production, increased consumption of oxygen, and increased formation of reactive oxygen species in the presence of farnesol. The cho1∆/∆ mutant also exhibits decreased sensitivity to mitochondrial ATPase inhibition, suggesting that cells lacking PS and/or downstream PE rely less on mitochondrial function for ATP synthesis. These data reveal that PS and PE play roles in farnesol tolerance and maintaining mitochondrial respiratory function.

摘要

白色念珠菌是最常见的人类真菌病原体之一。从酵母形态转变为菌丝生长的能力对其致病性至关重要。法尼醇是类异戊二烯/甾醇途径中的一种前体,是白色念珠菌产生的一种群体感应分子,可抑制这种多态性真菌的菌丝生长。有趣的是,白色念珠菌能够耐受对其他真菌有毒的法尼醇浓度。我们推测磷脂组成的变化是白色念珠菌对法尼醇耐受性的影响因素之一。在本研究中,我们发现合成磷脂磷脂酰丝氨酸(PS)和/或磷脂酰乙醇胺(PE)的酶的缺失会损害白色念珠菌对法尼醇的耐受性。与野生型相比,磷脂突变体cho1∆/∆(PS缺失且PE合成减少)在法尼醇存在的情况下表现出更大的生长抑制、ATP产生减少、氧气消耗增加和活性氧形成增加。cho1∆/∆突变体对线粒体ATP酶抑制的敏感性也降低,这表明缺乏PS和/或下游PE的细胞在ATP合成中对线粒体功能的依赖较少。这些数据表明PS和PE在法尼醇耐受性和维持线粒体呼吸功能中发挥作用。

相似文献

1
Influence of phosphatidylserine and phosphatidylethanolamine on farnesol tolerance in Candida albicans.
Yeast. 2018 Apr;35(4):343-351. doi: 10.1002/yea.3297. Epub 2018 Feb 8.
2
Phosphatidylserine synthase and phosphatidylserine decarboxylase are essential for cell wall integrity and virulence in Candida albicans.
Mol Microbiol. 2010 Mar;75(5):1112-32. doi: 10.1111/j.1365-2958.2009.07018.x. Epub 2010 Feb 4.
3
A functional link between hyphal maintenance and quorum sensing in Candida albicans.
Mol Microbiol. 2017 Feb;103(4):595-617. doi: 10.1111/mmi.13526. Epub 2016 Oct 11.
4
Deciphering fungal dimorphism: Farnesol's unanswered questions.
Mol Microbiol. 2017 Feb;103(4):567-575. doi: 10.1111/mmi.13601. Epub 2017 Jan 18.
6
Quorum sensing controls hyphal initiation in Candida albicans through Ubr1-mediated protein degradation.
Proc Natl Acad Sci U S A. 2014 Feb 4;111(5):1975-80. doi: 10.1073/pnas.1318690111. Epub 2014 Jan 21.
7
Cellular interactions of farnesol, a quorum-sensing molecule produced by Candida albicans.
Future Microbiol. 2009 Dec;4(10):1353-62. doi: 10.2217/fmb.09.98.
9
Quorum sensing by farnesol revisited.
Curr Genet. 2017 Oct;63(5):791-797. doi: 10.1007/s00294-017-0683-x. Epub 2017 Feb 28.
10
The quorum-sensing molecule farnesol alters sphingolipid metabolism in human monocyte-derived dendritic cells.
mBio. 2024 Aug 14;15(8):e0073224. doi: 10.1128/mbio.00732-24. Epub 2024 Jul 2.

引用本文的文献

2
The effect of rhamnolipids on fungal membrane models as described by their interactions with phospholipids and sterols: An study.
Front Chem. 2023 Feb 21;11:1124129. doi: 10.3389/fchem.2023.1124129. eCollection 2023.
3
Transcriptional Response of Candida auris to the Mrr1 Inducers Methylglyoxal and Benomyl.
mSphere. 2022 Jun 29;7(3):e0012422. doi: 10.1128/msphere.00124-22. Epub 2022 Apr 27.
4
Novel Cesium Resistance Mechanism of Alkaliphilic Bacterium Isolated From Jumping Spider Ground Extract.
Front Microbiol. 2022 Mar 8;13:841821. doi: 10.3389/fmicb.2022.841821. eCollection 2022.
5
Reduction in Pathogenicity in Yeast-like Fungi by Farnesol in Quail Model.
Animals (Basel). 2022 Feb 16;12(4):489. doi: 10.3390/ani12040489.
6
GLUT3 as an Intersection of Glycerophospholipid Metabolism and the Innate Immune Response to .
Front Cell Infect Microbiol. 2021 Jun 18;11:648988. doi: 10.3389/fcimb.2021.648988. eCollection 2021.

本文引用的文献

1
Candida albicans pathogenicity mechanisms.
Virulence. 2013 Feb 15;4(2):119-28. doi: 10.4161/viru.22913. Epub 2013 Jan 9.
2
A review of Candida species causing blood stream infection.
Indian J Med Microbiol. 2012 Jul-Sep;30(3):270-8. doi: 10.4103/0255-0857.99484.
4
Growth of Candida albicans hyphae.
Nat Rev Microbiol. 2011 Aug 16;9(10):737-48. doi: 10.1038/nrmicro2636.
5
Coevolution of morphology and virulence in Candida species.
Eukaryot Cell. 2011 Sep;10(9):1173-82. doi: 10.1128/EC.05085-11. Epub 2011 Jul 15.
6
Pathogenesis and treatment of oral candidosis.
J Oral Microbiol. 2011 Jan 28;3. doi: 10.3402/jom.v3i0.5771.
8
Phosphatidylserine synthase and phosphatidylserine decarboxylase are essential for cell wall integrity and virulence in Candida albicans.
Mol Microbiol. 2010 Mar;75(5):1112-32. doi: 10.1111/j.1365-2958.2009.07018.x. Epub 2010 Feb 4.
9
Compartment-specific synthesis of phosphatidylethanolamine is required for normal heavy metal resistance.
Mol Biol Cell. 2010 Feb 1;21(3):443-55. doi: 10.1091/mbc.e09-06-0519. Epub 2009 Dec 16.
10
Cellular interactions of farnesol, a quorum-sensing molecule produced by Candida albicans.
Future Microbiol. 2009 Dec;4(10):1353-62. doi: 10.2217/fmb.09.98.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验