Suppr超能文献

抗菌肽K11选择性识别细菌仿生膜并通过扭曲其双层结构发挥作用。

Antimicrobial Peptide K11 Selectively Recognizes Bacterial Biomimetic Membranes and Acts by Twisting Their Bilayers.

作者信息

Ramos-Martín Francisco, Herrera-León Claudia, Antonietti Viviane, Sonnet Pascal, Sarazin Catherine, D'Amelio Nicola

机构信息

Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, 80039 Amiens, France.

Agents Infectieux, Résistance et Chimiothérapie, AGIR UR 4294, Université de Picardie Jules Verne, UFR de Pharmacie, 80037 Amiens, France.

出版信息

Pharmaceuticals (Basel). 2020 Dec 22;14(1):1. doi: 10.3390/ph14010001.

Abstract

K11 is a synthetic peptide originating from the introduction of a lysine residue in position 11 within the sequence of a rationally designed antibacterial scaffold. Despite its remarkable antibacterial properties towards many ESKAPE bacteria and its optimal therapeutic index (320), a detailed description of its mechanism of action is missing. As most antimicrobial peptides act by destabilizing the membranes of the target organisms, we investigated the interaction of K11 with biomimetic membranes of various phospholipid compositions by liquid and solid-state NMR. Our data show that K11 can selectively destabilize bacterial biomimetic membranes and torque the surface of their bilayers. The same is observed for membranes containing other negatively charged phospholipids which might suggest additional biological activities. Molecular dynamic simulations reveal that K11 can penetrate the membrane in four steps: after binding to phosphate groups by means of the lysine residue at the N-terminus (anchoring), three couples of lysine residues act subsequently to exert a torque in the membrane (twisting) which allows the insertion of aromatic side chains at both termini (insertion) eventually leading to the flip of the amphipathic helix inside the bilayer core (helix flip and internalization).

摘要

K11是一种合成肽,它是通过在合理设计的抗菌支架序列的第11位引入赖氨酸残基而产生的。尽管它对许多ESKAPE细菌具有显著的抗菌特性,且其治疗指数最佳(320),但其作用机制仍缺乏详细描述。由于大多数抗菌肽通过破坏靶标生物的膜来发挥作用,我们通过液体和固态核磁共振研究了K11与各种磷脂组成的仿生膜的相互作用。我们的数据表明,K11可以选择性地破坏细菌仿生膜的稳定性,并扭曲其双层表面。对于含有其他带负电荷磷脂的膜也观察到同样的情况,这可能暗示了其他生物学活性。分子动力学模拟表明,K11可以通过四个步骤穿透膜:首先通过N端的赖氨酸残基与磷酸基团结合(锚定),随后三对赖氨酸残基发挥作用,在膜中施加扭矩(扭转),这使得两端的芳香族侧链得以插入(插入),最终导致两亲性螺旋在双层核心内翻转(螺旋翻转和内化)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c479/7821925/526f653e37a9/pharmaceuticals-14-00001-g001.jpg

相似文献

2
Understanding the antimicrobial properties/activity of an 11-residue Lys homopeptide by alanine and proline scan.
Amino Acids. 2018 May;50(5):557-568. doi: 10.1007/s00726-018-2542-6. Epub 2018 Feb 21.
3
Antimicrobial Bombinin-like Peptide 3 Selectively Recognizes and Inserts into Bacterial Biomimetic Bilayers in Multiple Steps.
J Med Chem. 2021 Apr 22;64(8):5185-5197. doi: 10.1021/acs.jmedchem.1c00310. Epub 2021 Apr 14.
5
GALA: a designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery.
Adv Drug Deliv Rev. 2004 Apr 23;56(7):967-85. doi: 10.1016/j.addr.2003.10.041.
9
Probing the disparate effects of arginine and lysine residues on antimicrobial peptide/bilayer association.
Biochim Biophys Acta Biomembr. 2017 Oct;1859(10):1941-1950. doi: 10.1016/j.bbamem.2017.06.002. Epub 2017 Jun 3.

引用本文的文献

1
A New Insight into Phage Combination Therapeutic Approaches Against Drug-Resistant Mixed Bacterial Infections.
Phage (New Rochelle). 2024 Dec 18;5(4):203-222. doi: 10.1089/phage.2024.0011. eCollection 2024 Dec.
2
Mechanistic Insight into the Early Stages of Toroidal Pore Formation by the Antimicrobial Peptide Smp24.
Pharmaceutics. 2023 Sep 28;15(10):2399. doi: 10.3390/pharmaceutics15102399.
5
Structural and Functional Characterization of the Newly Designed Antimicrobial Peptide Crabrolin21.
Membranes (Basel). 2023 Mar 22;13(3):365. doi: 10.3390/membranes13030365.
6
The Gene Encodes Two Extracellular Hydroxylated Peptides and Impacts Flowering Time in Arabidopsis.
Plants (Basel). 2022 Dec 16;11(24):3554. doi: 10.3390/plants11243554.
8
The Role of Methyl-(Z)-11-tetradecenoate Acid from the Bacterial Membrane Lipid Composition in Antibiotic Resistance.
Biomed Res Int. 2022 Jun 13;2022:6028045. doi: 10.1155/2022/6028045. eCollection 2022.
9
Mechanistic Understanding from Molecular Dynamics in Pharmaceutical Research 2: Lipid Membrane in Drug Design.
Pharmaceuticals (Basel). 2021 Oct 19;14(10):1062. doi: 10.3390/ph14101062.

本文引用的文献

1
Simulation Best Practices for Lipid Membranes [Article v1.0].
Living J Comput Mol Sci. 2019 Jan 9;1(1). doi: 10.33011/livecoms.1.1.5966.
2
ADAPTABLE: a comprehensive web platform of antimicrobial peptides tailored to the user's research.
Life Sci Alliance. 2019 Nov 18;2(6). doi: 10.26508/lsa.201900512. Print 2019 Dec.
3
Interaction of Antimicrobial Lipopeptides with Bacterial Lipid Bilayers.
J Membr Biol. 2019 Oct;252(4-5):317-329. doi: 10.1007/s00232-019-00068-3. Epub 2019 May 16.
4
Enhanced Silkworm Cecropin B Antimicrobial Activity against from Single Amino Acid Variation.
ACS Infect Dis. 2019 Jul 12;5(7):1200-1213. doi: 10.1021/acsinfecdis.9b00042. Epub 2019 May 10.
5
Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review.
Front Microbiol. 2019 Apr 1;10:539. doi: 10.3389/fmicb.2019.00539. eCollection 2019.
8
Computational Modeling of Realistic Cell Membranes.
Chem Rev. 2019 May 8;119(9):6184-6226. doi: 10.1021/acs.chemrev.8b00460. Epub 2019 Jan 9.
9
Phylogenetic barriers to horizontal transfer of antimicrobial peptide resistance genes in the human gut microbiota.
Nat Microbiol. 2019 Mar;4(3):447-458. doi: 10.1038/s41564-018-0313-5. Epub 2018 Dec 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验