Ramos-Martín Francisco, Herrera-León Claudia, Antonietti Viviane, Sonnet Pascal, Sarazin Catherine, D'Amelio Nicola
Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, 80039 Amiens, France.
Agents Infectieux, Résistance et Chimiothérapie, AGIR UR 4294, Université de Picardie Jules Verne, UFR de Pharmacie, 80037 Amiens, France.
Pharmaceuticals (Basel). 2020 Dec 22;14(1):1. doi: 10.3390/ph14010001.
K11 is a synthetic peptide originating from the introduction of a lysine residue in position 11 within the sequence of a rationally designed antibacterial scaffold. Despite its remarkable antibacterial properties towards many ESKAPE bacteria and its optimal therapeutic index (320), a detailed description of its mechanism of action is missing. As most antimicrobial peptides act by destabilizing the membranes of the target organisms, we investigated the interaction of K11 with biomimetic membranes of various phospholipid compositions by liquid and solid-state NMR. Our data show that K11 can selectively destabilize bacterial biomimetic membranes and torque the surface of their bilayers. The same is observed for membranes containing other negatively charged phospholipids which might suggest additional biological activities. Molecular dynamic simulations reveal that K11 can penetrate the membrane in four steps: after binding to phosphate groups by means of the lysine residue at the N-terminus (anchoring), three couples of lysine residues act subsequently to exert a torque in the membrane (twisting) which allows the insertion of aromatic side chains at both termini (insertion) eventually leading to the flip of the amphipathic helix inside the bilayer core (helix flip and internalization).
K11是一种合成肽,它是通过在合理设计的抗菌支架序列的第11位引入赖氨酸残基而产生的。尽管它对许多ESKAPE细菌具有显著的抗菌特性,且其治疗指数最佳(320),但其作用机制仍缺乏详细描述。由于大多数抗菌肽通过破坏靶标生物的膜来发挥作用,我们通过液体和固态核磁共振研究了K11与各种磷脂组成的仿生膜的相互作用。我们的数据表明,K11可以选择性地破坏细菌仿生膜的稳定性,并扭曲其双层表面。对于含有其他带负电荷磷脂的膜也观察到同样的情况,这可能暗示了其他生物学活性。分子动力学模拟表明,K11可以通过四个步骤穿透膜:首先通过N端的赖氨酸残基与磷酸基团结合(锚定),随后三对赖氨酸残基发挥作用,在膜中施加扭矩(扭转),这使得两端的芳香族侧链得以插入(插入),最终导致两亲性螺旋在双层核心内翻转(螺旋翻转和内化)。