Center for Energy Convergence Research, Korea Institute of Science and Technology (KIST) , Seoul 02792, Republic of Korea.
Department of Chemical and Biomolecular Engineering, Yonsei University , Seoul 03722, Republic of Korea.
Nano Lett. 2017 Dec 13;17(12):7869-7877. doi: 10.1021/acs.nanolett.7b04158. Epub 2017 Nov 16.
Battery performance, such as the rate capability and cycle stability of lithium transition metal oxides, is strongly correlated with the surface properties of active particles. For lithium-rich layered oxides, transition metal segregation in the initial state and migration upon cycling leads to a significant structural rearrangement, which eventually degrades the electrode performance. Here, we show that a fine-tuning of surface chemistry on the particular crystal facet can facilitate ionic diffusion and thus improve the rate capability dramatically, delivering a specific capacity of ∼110 mAh g at 30C. This high rate performance is realized by creating a nanoscale zirconium-abundant rock-salt-like surface phase epitaxially grown on the layered bulk. This surface layer is spontaneously formed on the Li-diffusive crystallographic facets during the synthesis and is also durable upon electrochemical cycling. As a result, Li-ions can move rapidly through this nanoscale surface layer over hundreds of cycles. This study provides a promising new strategy for designing and preparing a high-performance lithium-rich layered oxide cathode material.
电池性能,如锂过渡金属氧化物的倍率性能和循环稳定性,与活性颗粒的表面特性密切相关。对于富锂层状氧化物,在初始状态下过渡金属的分凝以及循环过程中的迁移会导致显著的结构重排,最终降低电极性能。在这里,我们表明,对特定晶面的表面化学进行精细调控可以促进离子扩散,从而显著提高倍率性能,在 30C 时提供约 110mAh/g 的比容量。这种高倍率性能是通过在层状体上外延生长纳米级富锆的类岩盐表面相来实现的。该表面层在合成过程中于 Li 扩散的晶面自发生成,并且在电化学循环过程中也很稳定。结果,Li 离子可以在数百个循环中通过这个纳米级表面层快速移动。这项研究为设计和制备高性能富锂层状氧化物正极材料提供了一个有前途的新策略。