Aslan Selçuk, Noor Elad, Bar-Even Arren
Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany.
Institute of Molecular Systems Biology, ETH Zurich, Auguste-Piccard-Hof 1, Zürich 8093, Switzerland.
Biochem J. 2017 Nov 16;474(23):3935-3950. doi: 10.1042/BCJ20170377.
What does it take to convert a living organism into a truly productive biofactory? Apart from optimizing biosynthesis pathways as standalone units, a successful bioengineering approach must bend the endogenous metabolic network of the host, and especially its central metabolism, to support the bioproduction process. In practice, this usually involves three complementary strategies which include tuning-down or abolishing competing metabolic pathways, increasing the availability of precursors of the desired biosynthesis pathway, and ensuring high availability of energetic resources such as ATP and NADPH. In this review, we explore these strategies, focusing on key metabolic pathways and processes, such as glycolysis, anaplerosis, the TCA (tricarboxylic acid) cycle, and NADPH production. We show that only a holistic approach for bioengineering - considering the metabolic network of the host organism as a whole, rather than focusing on the production pathway alone - can truly mold microorganisms into efficient biofactories.
要将一个活的生物体转化为一个真正高效的生物工厂需要什么?除了将生物合成途径作为独立单元进行优化之外,一种成功的生物工程方法必须改变宿主的内源性代谢网络,尤其是其中心代谢,以支持生物生产过程。在实践中,这通常涉及三种互补策略,包括下调或消除竞争性代谢途径、增加所需生物合成途径前体的可用性,以及确保高能资源如ATP和NADPH的高可用性。在这篇综述中,我们探讨这些策略,重点关注关键代谢途径和过程,如糖酵解、回补反应、三羧酸(TCA)循环和NADPH的产生。我们表明,只有一种整体的生物工程方法——将宿主生物体的代谢网络作为一个整体来考虑,而不是仅仅关注生产途径——才能真正将微生物塑造成高效的生物工厂。