Suppr超能文献

基于知识的自上而下的酵母中心碳代谢遗传缩减。

Top-Down, Knowledge-Based Genetic Reduction of Yeast Central Carbon Metabolism.

机构信息

Department of Biotechnology, Delft University of Technologygrid.5292.c, Delft, The Netherlands.

出版信息

mBio. 2022 Oct 26;13(5):e0297021. doi: 10.1128/mbio.02970-21. Epub 2022 Sep 21.

Abstract

Saccharomyces cerevisiae, whose evolutionary past includes a whole-genome duplication event, is characterized by a mosaic genome configuration with substantial apparent genetic redundancy. This apparent redundancy raises questions about the evolutionary driving force for genomic fixation of "minor" paralogs and complicates modular and combinatorial metabolic engineering strategies. While isoenzymes might be important in specific environments, they could be dispensable in controlled laboratory or industrial contexts. The present study explores the extent to which the genetic complexity of the central carbon metabolism (CCM) in S. cerevisiae, here defined as the combination of glycolysis, the pentose phosphate pathway, the tricarboxylic acid cycle, and a limited number of related pathways and reactions, can be reduced by elimination of (iso)enzymes without major negative impacts on strain physiology. Cas9-mediated, groupwise deletion of 35 of the 111 genes yielded a "minimal CCM" strain which, despite the elimination of 32% of CCM-related proteins, showed only a minimal change in phenotype on glucose-containing synthetic medium in controlled bioreactor cultures relative to a congenic reference strain. Analysis under a wide range of other growth and stress conditions revealed remarkably few phenotypic changes from the reduction of genetic complexity. Still, a well-documented context-dependent role of in osmotolerance was confirmed. The minimal CCM strain provides a model system for further research into genetic redundancy of yeast genes and a platform for strategies aimed at large-scale, combinatorial remodeling of yeast CCM. Fundamental questions regarding the minimal requirements for life have prompted scientists to embark on top-down efforts to reduce microbial genomes to the minimum set of genes and proteins necessary to sustain cell survival and division. While these efforts are generally focused on small, prokaryotic genomes, Saccharomyces cerevisiae, a popular industrial and model organism, has a typical eukaryotic genome characterized by a high genetic redundancy. The cellular function of redundant genes is generally poorly understood and is often investigated at the scale of a few genes. In this study, we explore genetic redundancy at large scale, encompassing the ~100 genes involved in central carbon metabolism, a part of metabolism essential for life and highly conserved among eukaryotes. This study reveals the remarkable resilience of this model eukaryote, as it was hardly affected, under a broad range of conditions, by a 32% reduction of its central carbon metabolism.

摘要

酿酒酵母的进化史经历了一次全基因组复制事件,其基因组呈现镶嵌式结构,存在大量明显的遗传冗余。这种明显的冗余引发了人们对基因组固定“次要”旁系同源物的进化驱动力的质疑,并使模块化和组合代谢工程策略变得复杂。虽然同工酶在特定环境中可能很重要,但在受控的实验室或工业环境中可能是可有可无的。本研究探讨了酿酒酵母中心碳代谢(CCM)的遗传复杂性在多大程度上可以通过消除(同工)酶而降低,而不会对菌株生理学产生重大负面影响。在这里,CCM 被定义为糖酵解、戊糖磷酸途径、三羧酸循环和一些相关途径和反应的组合。Cas9 介导的 111 个基因中的 35 个进行了分组删除,得到了一个“最小 CCM”菌株,尽管消除了 32%的 CCM 相关蛋白,但与同基因参考菌株相比,在控制式生物反应器培养的含葡萄糖合成培养基上的表型变化很小。在广泛的其他生长和应激条件下的分析表明,遗传复杂性的降低几乎没有引起表型变化。尽管如此,仍证实了在耐渗性方面的一个有充分文献记载的、依赖于背景的作用。最小 CCM 菌株为进一步研究酵母基因的遗传冗余提供了模型系统,并为旨在大规模、组合重塑酵母 CCM 的策略提供了平台。 关于微生物生存所需的最低要求的基本问题促使科学家们着手进行自上而下的努力,将微生物基因组简化为维持细胞存活和分裂所需的最小基因和蛋白质集。虽然这些努力通常集中在小型原核基因组上,但酿酒酵母作为一种流行的工业和模式生物,具有典型的真核基因组,其特点是遗传冗余度高。冗余基因的细胞功能通常知之甚少,并且通常在几个基因的规模上进行研究。在这项研究中,我们在大规模范围内探索遗传冗余性,涵盖了参与中心碳代谢的约 100 个基因,这是一种对生命至关重要且在真核生物中高度保守的代谢部分。这项研究揭示了这个模型真核生物的惊人弹性,因为在广泛的条件下,其中心碳代谢减少 32%几乎没有对其产生影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验