Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, 92697, USA.
Department Chemical and Biomolecular Engineering University of California Irvine, Irvine, CA, 92697, USA.
Nat Commun. 2022 Nov 26;13(1):7282. doi: 10.1038/s41467-022-35021-x.
Noncanonical cofactor biomimetics (NCBs) such as nicotinamide mononucleotide (NMN) provide enhanced scalability for biomanufacturing. However, engineering enzymes to accept NCBs is difficult. Here, we establish a growth selection platform to evolve enzymes to utilize NMN-based reducing power. This is based on an orthogonal, NMN-dependent glycolytic pathway in Escherichia coli which can be coupled to any reciprocal enzyme to recycle the ensuing reduced NMN. With a throughput of >10 variants per iteration, the growth selection discovers a Lactobacillus pentosus NADH oxidase variant with ~10-fold increase in NMNH catalytic efficiency and enhanced activity for other NCBs. Molecular modeling and experimental validation suggest that instead of directly contacting NCBs, the mutations optimize the enzyme's global conformational dynamics to resemble the WT with the native cofactor bound. Restoring the enzyme's access to catalytically competent conformation states via deep navigation of protein sequence space with high-throughput evolution provides a universal route to engineer NCB-dependent enzymes.
非典型辅因子模拟物(NCBs),如烟酰胺单核苷酸(NMN),为生物制造提供了增强的可扩展性。然而,工程酶以接受 NCBs 是困难的。在这里,我们建立了一个生长选择平台来进化酶以利用基于 NMN 的还原力。这是基于大肠杆菌中正交的、依赖 NMN 的糖酵解途径,它可以与任何互补酶偶联,以回收随后产生的还原 NMN。通过每轮迭代超过 10 个变体的高通量,生长选择发现了一种乳杆菌 NADH 氧化酶变体,其 NMNH 催化效率提高了约 10 倍,对其他 NCBs 的活性也增强了。分子建模和实验验证表明,突变并没有直接接触 NCBs,而是通过优化酶的全局构象动力学,使其类似于与天然辅因子结合的 WT。通过高通量进化对蛋白质序列空间进行深入导航,恢复酶对催化有效构象状态的访问,为工程 NCB 依赖性酶提供了一种通用途径。