Trans-membrane Trafficking Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Kunigami, Okinawa, 904-0495, Japan.
Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Sci Rep. 2017 Nov 16;7(1):15743. doi: 10.1038/s41598-017-15837-0.
Evolution of a nano-machine consisting of multiple parts, each with a specific function, is a complex process. A change in one part should eventually result in changes in other parts, if the overall function is to be conserved. In bacterial flagella, the filament and the hook have distinct functions and their respective proteins, FliC and FlgE, have different three-dimensional structures. The filament functions as a helical propeller and the hook as a flexible universal joint. Two proteins, FlgK and FlgL, assure a smooth connectivity between the hook and the filament. Here we show that, in Campylobacter, the 3D structure of FlgK differs from that of its orthologs in Salmonella and Burkholderia, whose structures have previously been solved. Docking the model of the FlgK junction onto the structure of the Campylobacter hook provides some clues about its divergence. These data suggest how evolutionary pressure to adapt to structural constraints, due to the structure of Campylobacter hook, causes divergence of one element of a supra-molecular complex in order to maintain the function of the entire flagellar assembly.
由具有特定功能的多个部分组成的纳米机器的进化是一个复杂的过程。如果要保持整体功能不变,则一个部分的变化最终应该导致其他部分的变化。在细菌鞭毛中,丝状体和钩状体具有不同的功能,其相应的蛋白质FliC 和 FlgE 具有不同的三维结构。丝状体充当螺旋桨,而钩状体充当灵活的万向节。两种蛋白质FlgK 和 FlgL 确保了钩状体和丝状体之间的平滑连接。在这里,我们表明,在弯曲杆菌中,FlgK 的 3D 结构与沙门氏菌和伯克霍尔德氏菌的同源物不同,而这两种结构先前已被解决。将 FlgK 连接体的模型对接在弯曲杆菌钩体的结构上,提供了有关其分歧的一些线索。这些数据表明,由于弯曲杆菌钩体的结构,适应结构限制的进化压力如何导致超分子复合物的一个元素发生分歧,以维持整个鞭毛组件的功能。