Liu Chunyu, Li Yuan, Song Sutao, Zhang Jiacai
1College of Information Science and Technology, Beijing Normal University, Beijing, China.
2School of Electrical and Information Engineering, Tianjin University, Tianjin, China.
Cogn Neurodyn. 2020 Apr;14(2):169-179. doi: 10.1007/s11571-019-09557-6. Epub 2019 Oct 9.
Humans use binocular disparity to extract depth information from two-dimensional retinal images in a process called stereopsis. Previous studies usually introduce the standard univariate analysis to describe the correlation between disparity level and brain activity within a given brain region based on functional magnetic resonance imaging (fMRI) data. Recently, multivariate pattern analysis has been developed to extract activity patterns across multiple voxels for deciphering categories of binocular disparity. However, the functional connectivity (FC) of patterns based on regions of interest or voxels and their mapping onto disparity category perception remain unknown. The present study extracted functional connectivity patterns for three disparity conditions (crossed disparity, uncrossed disparity, and zero disparity) at distinct spatial scales to decode the binocular disparity. Results of 27 subjects' fMRI data demonstrate that FC features are more discriminatory than traditional voxel activity features in binocular disparity classification. The average binary classification of the whole brain and visual areas are respectively 87% and 79% at single subject level, and thus above the chance level (50%). Our research highlights the importance of exploring functional connectivity patterns to achieve a novel understanding of 3D image processing.
人类利用双眼视差,通过一种称为立体视觉的过程从二维视网膜图像中提取深度信息。以往的研究通常采用标准单变量分析,基于功能磁共振成像(fMRI)数据来描述给定脑区内视差水平与脑活动之间的相关性。最近,多变量模式分析已被开发出来,用于提取多个体素的活动模式,以解读双眼视差的类别。然而,基于感兴趣区域或体素的模式的功能连接性(FC)及其在视差类别感知上的映射仍不清楚。本研究在不同空间尺度上提取了三种视差条件(交叉视差、非交叉视差和零视差)的功能连接模式,以解码双眼视差。27名受试者的fMRI数据结果表明,在双眼视差分类中,FC特征比传统的体素活动特征更具区分性。在单受试者水平上,全脑和视觉区域的平均二元分类准确率分别为87%和79%,因此高于机遇水平(50%)。我们的研究强调了探索功能连接模式对于实现对三维图像处理新理解的重要性。