Suppr超能文献

利用功能连接模式从功能磁共振成像数据中解码三维图像中的视差类别。

Decoding disparity categories in 3-dimensional images from fMRI data using functional connectivity patterns.

作者信息

Liu Chunyu, Li Yuan, Song Sutao, Zhang Jiacai

机构信息

1College of Information Science and Technology, Beijing Normal University, Beijing, China.

2School of Electrical and Information Engineering, Tianjin University, Tianjin, China.

出版信息

Cogn Neurodyn. 2020 Apr;14(2):169-179. doi: 10.1007/s11571-019-09557-6. Epub 2019 Oct 9.

Abstract

Humans use binocular disparity to extract depth information from two-dimensional retinal images in a process called stereopsis. Previous studies usually introduce the standard univariate analysis to describe the correlation between disparity level and brain activity within a given brain region based on functional magnetic resonance imaging (fMRI) data. Recently, multivariate pattern analysis has been developed to extract activity patterns across multiple voxels for deciphering categories of binocular disparity. However, the functional connectivity (FC) of patterns based on regions of interest or voxels and their mapping onto disparity category perception remain unknown. The present study extracted functional connectivity patterns for three disparity conditions (crossed disparity, uncrossed disparity, and zero disparity) at distinct spatial scales to decode the binocular disparity. Results of 27 subjects' fMRI data demonstrate that FC features are more discriminatory than traditional voxel activity features in binocular disparity classification. The average binary classification of the whole brain and visual areas are respectively 87% and 79% at single subject level, and thus above the chance level (50%). Our research highlights the importance of exploring functional connectivity patterns to achieve a novel understanding of 3D image processing.

摘要

人类利用双眼视差,通过一种称为立体视觉的过程从二维视网膜图像中提取深度信息。以往的研究通常采用标准单变量分析,基于功能磁共振成像(fMRI)数据来描述给定脑区内视差水平与脑活动之间的相关性。最近,多变量模式分析已被开发出来,用于提取多个体素的活动模式,以解读双眼视差的类别。然而,基于感兴趣区域或体素的模式的功能连接性(FC)及其在视差类别感知上的映射仍不清楚。本研究在不同空间尺度上提取了三种视差条件(交叉视差、非交叉视差和零视差)的功能连接模式,以解码双眼视差。27名受试者的fMRI数据结果表明,在双眼视差分类中,FC特征比传统的体素活动特征更具区分性。在单受试者水平上,全脑和视觉区域的平均二元分类准确率分别为87%和79%,因此高于机遇水平(50%)。我们的研究强调了探索功能连接模式对于实现对三维图像处理新理解的重要性。

相似文献

3
3D Contrast Image Reconstruction From Human Brain Activity.从人类大脑活动中重建 3D 对比图像。
IEEE Trans Neural Syst Rehabil Eng. 2020 Dec;28(12):2699-2710. doi: 10.1109/TNSRE.2020.3035818. Epub 2021 Jan 28.

引用本文的文献

5
Decoding six basic emotions from brain functional connectivity patterns.从大脑功能连接模式中解码六种基本情绪。
Sci China Life Sci. 2023 Apr;66(4):835-847. doi: 10.1007/s11427-022-2206-3. Epub 2022 Nov 11.
6
Categorizing objects from MEG signals using EEGNet.使用EEGNet从脑磁图信号中对物体进行分类。
Cogn Neurodyn. 2022 Apr;16(2):365-377. doi: 10.1007/s11571-021-09717-7. Epub 2021 Sep 17.
7
Ultra-High-Field Neuroimaging Reveals Fine-Scale Processing for 3D Perception.超高场神经影像学揭示了三维感知的精细加工。
J Neurosci. 2021 Oct 6;41(40):8362-8374. doi: 10.1523/JNEUROSCI.0065-21.2021. Epub 2021 Aug 19.

本文引用的文献

2
Semantic representation in the white matter pathway.白质通路中的语义表示。
PLoS Biol. 2018 Apr 6;16(4):e2003993. doi: 10.1371/journal.pbio.2003993. eCollection 2018 Apr.
5
Relationships between short and fast brain timescales.短与快的大脑时间尺度之间的关系。
Cogn Neurodyn. 2017 Dec;11(6):539-552. doi: 10.1007/s11571-017-9450-4. Epub 2017 Aug 23.
7
From abstract topology to real thermodynamic brain activity.从抽象拓扑到真实的脑热力学活动。
Cogn Neurodyn. 2017 Jun;11(3):283-292. doi: 10.1007/s11571-017-9431-7. Epub 2017 Mar 14.
8
The feeling of understanding: an exploration with neural models.理解的感觉:用神经模型进行的探索。
Cogn Neurodyn. 2017 Apr;11(2):135-146. doi: 10.1007/s11571-016-9414-0. Epub 2016 Oct 21.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验