Suppr超能文献

由短淀粉样生成肽形成的淀粉样纤维的多样性和实用性。

The diversity and utility of amyloid fibrils formed by short amyloidogenic peptides.

作者信息

Al-Garawi Zahraa S, Morris Kyle L, Marshall Karen E, Eichler Jutta, Serpell Louise C

机构信息

School of Life Sciences, University of Sussex, Falmer, East Sussex BN1 9QG, UK.

Chemistry Department, College of Sciences, Al-Mustansyria University, Baghdad, Iraq.

出版信息

Interface Focus. 2017 Dec 6;7(6):20170027. doi: 10.1098/rsfs.2017.0027. Epub 2017 Oct 20.

Abstract

Amyloidogenic peptides are well known for their involvement in diseases such as type 2 diabetes and Alzheimer's disease. However, more recently, amyloid fibrils have been shown to provide scaffolding and protection as functional materials in a range of organisms from bacteria to humans. These roles highlight the incredible tensile strength of the cross-β amyloid architecture. Many amino acid sequences are able to self-assemble to form amyloid with a cross-β core. Here we describe our recent advances in understanding how sequence contributes to amyloidogenicity and structure. For example, we describe penta- and hexapeptides that assemble to form different morphologies; a 12mer peptide that forms fibrous crystals; and an eight-residue peptide originating from α-synuclein that has the ability to form nanotubes. This work provides a wide range of peptides that may be exploited as fibrous bionanomaterials. These fibrils provide a scaffold upon which functional groups may be added, or templated assembly may be performed.

摘要

淀粉样生成肽因参与诸如2型糖尿病和阿尔茨海默病等疾病而广为人知。然而,最近研究表明,淀粉样纤维在从细菌到人类的一系列生物体中作为功能材料提供支架和保护作用。这些作用凸显了交叉β淀粉样结构令人难以置信的拉伸强度。许多氨基酸序列能够自组装形成具有交叉β核心的淀粉样蛋白。在此,我们描述了我们在理解序列如何影响淀粉样生成性和结构方面的最新进展。例如,我们描述了能组装形成不同形态的五肽和六肽;能形成纤维状晶体的12聚体肽;以及源自α-突触核蛋白的具有形成纳米管能力的八残基肽。这项工作提供了一系列可用作纤维状生物纳米材料的肽。这些纤维提供了一个支架,在其上可以添加官能团,或者进行模板组装。

相似文献

1
The diversity and utility of amyloid fibrils formed by short amyloidogenic peptides.
Interface Focus. 2017 Dec 6;7(6):20170027. doi: 10.1098/rsfs.2017.0027. Epub 2017 Oct 20.
3
Aliphatic peptides show similar self-assembly to amyloid core sequences, challenging the importance of aromatic interactions in amyloidosis.
Proc Natl Acad Sci U S A. 2013 Jan 8;110(2):519-24. doi: 10.1073/pnas.1217742110. Epub 2012 Dec 24.
5
Prolines and amyloidogenicity in fragments of the Alzheimer's peptide beta/A4.
Biochemistry. 1995 Jan 24;34(3):724-30. doi: 10.1021/bi00003a003.
6
Silica Nanowires Templated by Amyloid-like Fibrils.
Angew Chem Int Ed Engl. 2015 Nov 2;54(45):13327-31. doi: 10.1002/anie.201508415. Epub 2015 Oct 5.
7
Functionalised amyloid fibrils for roles in cell adhesion.
Biomaterials. 2008 Apr;29(11):1553-62. doi: 10.1016/j.biomaterials.2007.11.028. Epub 2007 Dec 31.
8
Morphology and antibody recognition of synthetic beta-amyloid peptides.
J Neurosci Res. 1991 Apr;28(4):474-85. doi: 10.1002/jnr.490280404.
10
Structural Diversity of Amyloid Fibrils and Advances in Their Structure Determination.
Biochemistry. 2020 Feb 11;59(5):639-646. doi: 10.1021/acs.biochem.9b01069. Epub 2020 Jan 28.

引用本文的文献

1
Proteomic Evidence for Amyloidogenic Cross-Seeding in Fibrinaloid Microclots.
Int J Mol Sci. 2024 Oct 8;25(19):10809. doi: 10.3390/ijms251910809.
2
Solvent induced amyloid polymorphism and the uncovering of the elusive class 3 amyloid topology.
Commun Biol. 2024 Aug 9;7(1):968. doi: 10.1038/s42003-024-06621-8.
4
Amyloids and prions in the light of evolution.
Curr Genet. 2023 Dec;69(4-6):189-202. doi: 10.1007/s00294-023-01270-6. Epub 2023 May 10.
5
The Way forward for the Origin of Life: Prions and Prion-Like Molecules First Hypothesis.
Life (Basel). 2021 Aug 25;11(9):872. doi: 10.3390/life11090872.
6
A theoretical study of polymorphism in VQIVYK fibrils.
Biophys J. 2021 Apr 20;120(8):1396-1416. doi: 10.1016/j.bpj.2021.01.032. Epub 2021 Feb 9.
7
Multistep Changes in Amyloid Structure Induced by Cross-Seeding on a Rugged Energy Landscape.
Biophys J. 2021 Jan 19;120(2):284-295. doi: 10.1016/j.bpj.2020.12.005. Epub 2020 Dec 17.

本文引用的文献

1
Cryo-EM structures of tau filaments from Alzheimer's disease.
Nature. 2017 Jul 13;547(7662):185-190. doi: 10.1038/nature23002. Epub 2017 Jul 5.
2
Self-Assembly in Biosilicification and Biotemplated Silica Materials.
Nanomaterials (Basel). 2014 Sep 4;4(3):792-812. doi: 10.3390/nano4030792.
3
Chemically and thermally stable silica nanowires with a β-sheet peptide core for bionanotechnology.
J Nanobiotechnology. 2016 Dec 1;14(1):79. doi: 10.1186/s12951-016-0231-8.
4
A critical role for the self-assembly of Amyloid-β1-42 in neurodegeneration.
Sci Rep. 2016 Jul 22;6:30182. doi: 10.1038/srep30182.
5
Modification of β-Sheet Forming Peptide Hydrophobic Face: Effect on Self-Assembly and Gelation.
Langmuir. 2016 May 17;32(19):4917-23. doi: 10.1021/acs.langmuir.5b03841. Epub 2016 May 3.
6
A modular self-assembly approach to functionalised β-sheet peptide hydrogel biomaterials.
Soft Matter. 2016 Feb 14;12(6):1915-23. doi: 10.1039/c5sm02039e. Epub 2016 Jan 6.
7
Silica Nanowires Templated by Amyloid-like Fibrils.
Angew Chem Int Ed Engl. 2015 Nov 2;54(45):13327-31. doi: 10.1002/anie.201508415. Epub 2015 Oct 5.
8
Beta-Sheet-Forming, Self-Assembled Peptide Nanomaterials towards Optical, Energy, and Healthcare Applications.
Small. 2015 Aug 12;11(30):3623-40. doi: 10.1002/smll.201500169. Epub 2015 Apr 30.
9
X-ray Crystallographic Structures of Oligomers of Peptides Derived from β2-Microglobulin.
J Am Chem Soc. 2015 May 20;137(19):6304-11. doi: 10.1021/jacs.5b01673. Epub 2015 May 12.
10
Self healing hydrogels composed of amyloid nano fibrils for cell culture and stem cell differentiation.
Biomaterials. 2015 Jun;54:97-105. doi: 10.1016/j.biomaterials.2015.03.002. Epub 2015 Mar 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验