Fernandes Francisco M, Coradin Thibaud, Aimé Carole
Sorbonne Universités, UPMC Univ Paris 06, CNRS, Collège de France, UMR 7574, Chimie de la Matière Condensée de Paris, F-75005 Paris, France.
Nanomaterials (Basel). 2014 Sep 4;4(3):792-812. doi: 10.3390/nano4030792.
During evolution, living organisms have learned to design biomolecules exhibiting self-assembly properties to build-up materials with complex organizations. This is particularly evidenced by the delicate siliceous structures of diatoms and sponges. These structures have been considered as inspiration sources for the preparation of nanoscale and nanostructured silica-based materials templated by the self-assembled natural or biomimetic molecules. These templates range from short peptides to large viruses, leading to biohybrid objects with a wide variety of dimensions, shapes and organization. A more recent strategy based on the integration of biological self-assembly as the driving force of silica nanoparticles organization offers new perspectives to elaborate highly-tunable, biofunctional nanocomposites.
在进化过程中,生物体已学会设计具有自组装特性的生物分子,以构建具有复杂组织结构的材料。硅藻和海绵的精致硅质结构尤其证明了这一点。这些结构被视为制备以自组装天然或仿生分子为模板的纳米级和纳米结构硅基材料的灵感来源。这些模板从短肽到大型病毒不等,从而产生了具有各种尺寸、形状和组织的生物杂交体。一种基于将生物自组装作为二氧化硅纳米颗粒组织驱动力的最新策略,为制备高度可调谐的生物功能纳米复合材料提供了新的视角。