Irimia Danut C, Cho Woosang, Ortner Rupert, Allison Brendan Z, Ignat Bogdan E, Edlinger Guenter, Guger Christoph
Guger Technologies OG, Graz, Austria.
"Gheorghe Asachi" Technical University of Iasi, Iasi, Romania.
Artif Organs. 2017 Nov;41(11):E178-E184. doi: 10.1111/aor.13054.
Conventional therapies do not provide paralyzed patients with closed-loop sensorimotor integration for motor rehabilitation. This work presents the recoveriX system, a hardware and software platform that combines a motor imagery (MI)-based brain-computer interface (BCI), functional electrical stimulation (FES), and visual feedback technologies for a complete sensorimotor closed-loop therapy system for poststroke rehabilitation. The proposed system was tested on two chronic stroke patients in a clinical environment. The patients were instructed to imagine the movement of either the left or right hand in random order. During these two MI tasks, two types of feedback were provided: a bar extending to the left or right side of a monitor as visual feedback and passive hand opening stimulated from FES as proprioceptive feedback. Both types of feedback relied on the BCI classification result achieved using common spatial patterns and a linear discriminant analysis classifier. After 10 sessions of recoveriX training, one patient partially regained control of wrist extension in her paretic wrist and the other patient increased the range of middle finger movement by 1 cm. A controlled group study is planned with a new version of the recoveriX system, which will have several improvements.
传统疗法无法为瘫痪患者提供用于运动康复的闭环感觉运动整合。这项工作展示了recoveriX系统,这是一个硬件和软件平台,它结合了基于运动想象(MI)的脑机接口(BCI)、功能性电刺激(FES)和视觉反馈技术,用于构建一个完整的用于中风后康复的感觉运动闭环治疗系统。所提出的系统在临床环境中对两名慢性中风患者进行了测试。患者被要求按随机顺序想象左手或右手的运动。在这两项运动想象任务期间,提供了两种类型的反馈:作为视觉反馈,一条横条延伸到显示器的左侧或右侧;作为本体感觉反馈,通过功能性电刺激被动打开手部。这两种类型的反馈都依赖于使用共同空间模式和线性判别分析分类器获得的脑机接口分类结果。经过10次recoveriX训练后,一名患者部分恢复了对其患侧手腕伸展的控制,另一名患者的中指运动范围增加了1厘米。计划使用改进后的新版本recoveriX系统进行一项对照研究。