Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain.
Servicio de Farmacia, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, Palma de Mallorca, Spain.
J Antimicrob Chemother. 2018 Mar 1;73(3):658-663. doi: 10.1093/jac/dkx424.
Characterization of the mechanisms driving ceftolozane/tazobactam resistance development in 5 of 47 (10.6%) patients treated for MDR Pseudomonas aeruginosa infections in a Spanish hospital.
Five pairs of ceftolozane/tazobactam-susceptible/resistant P. aeruginosa isolates were studied. MICs were determined by broth microdilution, clonal relatedness was assessed by MLST and resistance mechanisms were investigated by phenotypic and genotypic methods, including WGS. ampC variants were cloned to assess their impact on resistance.
In all five cases, the same clone was detected for the susceptible/resistant pairs; the widespread ST175 high-risk clone in four of the cases and ST179 in the remaining case. Genomic analysis of the four initial ST175 isolates revealed the characteristic OprD mutation (Q142X) responsible for carbapenem resistance and the AmpR mutation (G154R) responsible for AmpC overexpression and β-lactam resistance. The final isolates had developed ceftolozane/tazobactam and ceftazidime/avibactam resistance, and each additionally showed a mutation in AmpC: E247K in one of the isolates, T96I in two isolates and a deletion of 19 amino acids (G229-E247) in the remaining isolate. The cloned AmpC variants showed greatly increased ceftolozane/tazobactam and ceftazidime/avibactam MICs compared with WT AmpC, but, in contrast, yielded lower MICs of imipenem, cefepime and particularly piperacillin/tazobactam. On the other hand, ceftolozane/tazobactam resistance development in ST179 was shown to be driven by the emergence of the extended-spectrum OXA β-lactamase OXA-14, through the selection of an N146S mutation from OXA-10.
Modification of intrinsic (AmpC) and horizontally acquired β-lactamases appears to be the main mechanism leading to ceftolozane/tazobactam resistance in MDR P. aeruginosa.
在西班牙一家医院治疗耐多药铜绿假单胞菌感染的 47 名患者中,有 5 名(10.6%)患者对头孢他啶/他唑巴坦耐药,本研究旨在对导致这些患者耐药的机制进行分析。
研究了 5 对头孢他啶/他唑巴坦敏感/耐药的铜绿假单胞菌分离株。采用肉汤微量稀释法测定 MIC,采用 MLST 评估克隆相关性,采用表型和基因型方法(包括 WGS)研究耐药机制。克隆 ampC 变体以评估其对耐药性的影响。
在所有 5 例中,敏感/耐药对的分离株均为同一克隆;其中 4 例为广泛流行的 ST175 高危克隆,另 1 例为 ST179。对最初的 4 个 ST175 分离株的基因组分析显示,与碳青霉烯类耐药相关的特征性 OprD 突变(Q142X)和与 AmpC 过表达和β-内酰胺类耐药相关的 AmpR 突变(G154R)。最终的分离株已对头孢他啶/他唑巴坦和头孢他啶/阿维巴坦产生耐药性,并且每个分离株还显示 AmpC 中的一个突变:一个分离株为 E247K,两个分离株为 T96I,另一个分离株为 229-247 位氨基酸缺失。与野生型 AmpC 相比,克隆的 AmpC 变体对头孢他啶/他唑巴坦和头孢他啶/阿维巴坦的 MIC 值大大增加,但与野生型 AmpC 相比,对亚胺培南、头孢吡肟和哌拉西林/他唑巴坦的 MIC 值降低。另一方面,ST179 中头孢他啶/他唑巴坦耐药性的发展被证明是由扩展谱 OXAβ-内酰胺酶 OXA-14 的出现所驱动,通过从 OXA-10 中选择 N146S 突变。
内在(AmpC)和水平获得的β-内酰胺酶的修饰似乎是导致耐多药铜绿假单胞菌对头孢他啶/他唑巴坦耐药的主要机制。