Suppr超能文献

技能习得过程中人类大脑结构的扩展与重整化

Expansion and Renormalization of Human Brain Structure During Skill Acquisition.

作者信息

Wenger Elisabeth, Brozzoli Claudio, Lindenberger Ulman, Lövdén Martin

机构信息

Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.

Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden; ImpAct Team, Neuroscience Research Centre of Lyon (CRNL), Lyon, France.

出版信息

Trends Cogn Sci. 2017 Dec;21(12):930-939. doi: 10.1016/j.tics.2017.09.008.

Abstract

Research on human brain changes during skill acquisition has revealed brain volume expansion in task-relevant areas. However, the large number of skills that humans acquire during ontogeny militates against plasticity as a perpetual process of volume growth. Building on animal models and available theories, we promote the expansion-renormalization model for plastic changes in humans. The model predicts an initial increase of gray matter structure, potentially reflecting growth of neural resources like neurons, synapses, and glial cells, which is followed by a selection process operating on this new tissue leading to a complete or partial return to baseline of the overall volume after selection has ended. The model sheds new light on available evidence and current debates and fosters the search for mechanistic explanations.

摘要

对人类在技能习得过程中大脑变化的研究表明,与任务相关的区域会出现脑容量扩张。然而,人类在个体发育过程中习得的大量技能不利于将可塑性视为一种持续的脑容量增长过程。基于动物模型和现有理论,我们提出了人类可塑性变化的扩张-重整化模型。该模型预测灰质结构最初会增加,这可能反映了神经元、突触和神经胶质细胞等神经资源的增长,随后会对这些新组织进行一个选择过程,在选择结束后导致总体积完全或部分恢复到基线水平。该模型为现有证据和当前的争论提供了新的视角,并促进了对机制解释的探索。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验