Makino Hiroshi, Hwang Eun Jung, Hedrick Nathan G, Komiyama Takaki
Neurobiology Section, Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, CA 92093, USA; Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA.
Neurobiology Section, Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, CA 92093, USA; Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA.
Neuron. 2016 Nov 23;92(4):705-721. doi: 10.1016/j.neuron.2016.10.029.
The relationship between the brain and the environment is flexible, forming the foundation for our ability to learn. Here we review the current state of our understanding of the modifications in the sensorimotor pathway related to sensorimotor learning. We divide the process into three hierarchical levels with distinct goals: (1) sensory perceptual learning, (2) sensorimotor associative learning, and (3) motor skill learning. Perceptual learning optimizes the representations of important sensory stimuli. Associative learning and the initial phase of motor skill learning are ensured by feedback-based mechanisms that permit trial-and-error learning. The later phase of motor skill learning may primarily involve feedback-independent mechanisms operating under the classic Hebbian rule. With these changes under distinct constraints and mechanisms, sensorimotor learning establishes dedicated circuitry for the reproduction of stereotyped neural activity patterns and behavior.
大脑与环境之间的关系是灵活多变的,这为我们的学习能力奠定了基础。在此,我们回顾目前对与感觉运动学习相关的感觉运动通路变化的理解状况。我们将这一过程分为具有不同目标的三个层次水平:(1)感觉知觉学习,(2)感觉运动联合学习,以及(3)运动技能学习。知觉学习优化重要感觉刺激的表征。联合学习以及运动技能学习的初始阶段由基于反馈的机制来确保,这些机制允许试错学习。运动技能学习的后期阶段可能主要涉及在经典赫布法则下运行的非反馈机制。在这些不同的约束和机制下发生的这些变化,感觉运动学习建立了专门的神经回路,用于再现刻板的神经活动模式和行为。