Department of Mathematics, Stockholm University, Stockholm SE-106 91, Sweden.
Laboratoire de Mathématiques et Informatique (LAMI), EDST, Université Ouaga I Pr. Joseph Ki-Zerbo03 B.P.7021 Ouagadougou 03, Burkina Faso.
Math Biosci. 2018 Feb;296:45-59. doi: 10.1016/j.mbs.2017.11.006. Epub 2017 Nov 16.
An SEIRS epidemic with disease fatalities is introduced in a growing population (modelled as a super-critical linear birth and death process). The study of the initial phase of the epidemic is stochastic, while the analysis of the major outbreaks is deterministic. Depending on the values of the parameters, the following scenarios are possible. i) The disease dies out quickly, only infecting few; ii) the epidemic takes off, the number of infected individuals grows exponentially, but the fraction of infected individuals remains negligible; iii) the epidemic takes off, the number of infected grows initially quicker than the population, the disease fatalities diminish the growth rate of the population, but it remains super critical, and the fraction of infected go to an endemic equilibrium; iv) the epidemic takes off, the number of infected individuals grows initially quicker than the population, the diseases fatalities turn the exponential growth of the population to an exponential decay.
引入了一个具有疾病致死率的 SEIRS 传染病模型,在不断增长的人口中(模型表示为超临界线性出生和死亡过程)。传染病的初始阶段的研究是随机的,而主要爆发的分析是确定性的。根据参数的不同,可能出现以下情况。i)疾病迅速消失,仅感染少数人;ii)传染病爆发,感染人数呈指数增长,但感染人数的比例仍然微不足道;iii)传染病爆发,感染人数的增长最初快于人口增长,疾病致死率降低了人口增长率,但它仍然是超临界的,感染人数达到了地方性平衡;iv)传染病爆发,感染人数的增长最初快于人口增长,疾病致死率使人口的指数增长变为指数衰减。