State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology , Wuhan 430070, China.
Materials Science and Engineering Department, University of Washington , Seattle 98195-2120, United States.
ACS Appl Mater Interfaces. 2017 Dec 13;9(49):42717-42722. doi: 10.1021/acsami.7b13110. Epub 2017 Dec 4.
Aqueous zinc-ion batteries attract increasing attention due to their low cost, high safety, and potential application in stationary energy storage. However, the simultaneous realization of high cycling stability and high energy density remains a major challenge. To tackle the above-mentioned challenge, we develop a novel Zn/VO rechargeable aqueous hybrid-ion battery system by using porous VO as the cathode and metallic zinc as the anode. The VO cathode delivers a high discharge capacity of 238 mAh g at 50 mA g. 80% of the initial discharge capacity can be retained after 2000 cycles at a high current density of 2000 mA g. Meanwhile, the application of a "water-in-salt" electrolyte results in the increase of discharge platform from 0.6 to 1.0 V. This work provides an effective strategy to simultaneously enhance the energy density and cycling stability of aqueous zinc ion-based batteries.
水锌离子电池由于其低成本、高安全性以及在固定储能方面的潜在应用而受到越来越多的关注。然而,同时实现高循环稳定性和高能量密度仍然是一个主要挑战。为了解决上述挑战,我们通过使用多孔 VO 作为阴极和金属锌作为阳极,开发了一种新型的 Zn/VO 可充电水混合离子电池系统。VO 阴极在 50 mA g 的电流密度下提供 238 mAh g 的高放电容量。在 2000 mA g 的高电流密度下循环 2000 次后,初始放电容量的 80%可以保留。同时,“盐入水”电解质的应用使放电平台从 0.6 V 增加到 1.0 V。这项工作为同时提高水锌离子基电池的能量密度和循环稳定性提供了一种有效的策略。