Suppr超能文献

MXene衍生的锌预插层双层氧化钒阴极在水系锌离子电池中的应用

Operation of MXene-Derived Zinc-Preintercalated Bilayered Vanadium Oxide Cathode in Aqueous Zn-Ion Batteries.

作者信息

Averianov Timofey, Matthews Kyle, Zhang Xinle, Nguyen Huyen T K, Zhang Yuan, Gogotsi Yury, Pomerantseva Ekaterina

机构信息

Materials Electrochemistry Group, Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States.

A.J. Drexel Nanomaterials Institute Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States.

出版信息

ACS Appl Energy Mater. 2025 Aug 27;8(17):12695-12711. doi: 10.1021/acsaem.5c01721. eCollection 2025 Sep 8.

Abstract

Layered hydrated vanadium oxides, particularly those with bilayered structures, show remarkable electrochemical performance as cathodes for aqueous Zn-ion batteries (AZIBs). However, their wide-scale adoption is hindered by limited understanding of their charge storage mechanisms in different Zn-containing electrolytes. Here, we demonstrate the first synthesis of a MXene-derived Zn-preintercalated bilayered vanadium oxide (MD-ZVO) with a nanoflower-like morphology comprised of two-dimensional (2D) nanosheets, achieved via a two-step dissolution-recrystallization process. The strategic Zn preintercalation establishes well-defined ion diffusion pathways, while the nanoflower-like assembly of 2D nanosheets enhances structural integrity, together contributing to improved electrochemical performance over other layered vanadium oxides. A systematic evaluation of four electrolytes (2 M ZnSO, 2.6 M Zn-(OTf), 2 M ZnCl, and 30 m ZnCl) showed that MD-ZVO electrodes delivered high reversible capacities (450 and 315 mAh g at 0.1 A g), excellent rate capability (223 mAh g for both electrolytes at 1.0 A g), and good electrochemical stability (84% and 48% over 1000 cycles at 1.0 A g) in saturated 2.6 M Zn-(OTf) and highly concentrated 30 m ZnCl, respectively. The material's superior electrochemical stability in concentrated electrolytes is attributed to suppressed vanadium oxide dissolution during cycling. and XRD analyses of MD-ZVO electrodes reveal larger contribution of Zn-associated species for charge storage in cells containing 2.6 M Zn-(OTf) and proton dominant charge transfer in cells containing 30 m ZnCl. Additionally, the combination of and characterization demonstrates the reversible formation of Zn OTf (OH) ·HO in cells using 2.6 M Zn-(OTf) and Zn(OH)Cl·HO in cells using 30 m ZnCl on the MD-ZVO electrode surface over extended cycling. This work highlights the superior performance of nanoflower MD-ZVO for cathodes in aqueous Zn-ion batteries, which benefits from the proper selection of highly concentrated electrolytes that enable better utilization of the cathode material.

摘要

层状水合钒氧化物,特别是那些具有双层结构的氧化物,作为水系锌离子电池(AZIBs)的阴极表现出卓越的电化学性能。然而,由于对其在不同含锌电解质中的电荷存储机制了解有限,它们的广泛应用受到了阻碍。在此,我们展示了通过两步溶解 - 重结晶过程首次合成的具有纳米花状形态的MXene衍生的锌预插层双层钒氧化物(MD - ZVO),其由二维(2D)纳米片组成。战略性的锌预插层建立了明确的离子扩散途径,而二维纳米片的纳米花状组装增强了结构完整性,共同促成了比其他层状钒氧化物更好的电化学性能。对四种电解质(2 M ZnSO₄、2.6 M Zn-(OTf)₂、2 M ZnCl₂和30 m ZnCl₂)的系统评估表明,MD - ZVO电极在饱和的2.6 M Zn-(OTf)₂和高浓度的30 m ZnCl₂中分别表现出高可逆容量(在0.1 A g⁻¹时为450和315 mAh g⁻¹)、优异的倍率性能(在1.0 A g⁻¹时两种电解质均为223 mAh g⁻¹)以及良好的电化学稳定性(在1.0 A g⁻¹下1000次循环后分别为84%和48%)。该材料在浓电解质中的优异电化学稳定性归因于循环过程中钒氧化物溶解的抑制。MD - ZVO电极的XRD分析表明,在含有2.6 M Zn-(OTf)₂的电池中,与锌相关的物种对电荷存储的贡献更大,而在含有30 m ZnCl₂的电池中质子主导电荷转移。此外,XRD和XPS表征的结合表明,在MD - ZVO电极表面,使用2.6 M Zn-(OTf)₂的电池中可逆形成Zn₃(OTf)₂(OH)₂·H₂O,使用30 m ZnCl₂的电池中可逆形成Zn(OH)Cl·H₂O,且在长时间循环中均如此。这项工作突出了纳米花状MD - ZVO作为水系锌离子电池阴极的卓越性能,这得益于对高浓度电解质的恰当选择,从而能够更好地利用阴极材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd3c/12421514/757280498de0/ae5c01721_0009.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验