Dassa Bareket, Borovok Ilya, Lombard Vincent, Henrissat Bernard, Lamed Raphael, Bayer Edward A, Moraïs Sarah
Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 7610001, Israel.
Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 6997801, Israel.
Microorganisms. 2017 Nov 18;5(4):74. doi: 10.3390/microorganisms5040074.
The bacterial cellulosome is an extracellular, multi-enzyme machinery, which efficiently depolymerizes plant biomass by degrading plant cell wall polysaccharides. Several cellulolytic bacteria have evolved various elaborate modular architectures of active cellulosomes. We present here a genome-wide analysis of a dozen mesophilic clostridia species, including both well-studied and yet-undescribed cellulosome-producing bacteria. We first report here, the presence of cellulosomal elements, thus expanding our knowledge regarding the prevalence of the cellulosomal paradigm in nature. We explored the genomic organization of key cellulosome components by comparing the cellulosomal gene clusters in each bacterial species, and the conserved sequence features of the specific cellulosomal modules (cohesins and dockerins), on the background of their phylogenetic relationship. Additionally, we performed comparative analyses of the species-specific repertoire of carbohydrate-degrading enzymes for each of the clostridial species, and classified each cellulosomal enzyme into a specific CAZy family, thus indicating their putative enzymatic activity (e.g., cellulases, hemicellulases, and pectinases). Our work provides, for this large group of bacteria, a broad overview of the blueprints of their multi-component cellulosomal complexes. The high similarity of their scaffoldin clusters and dockerin-based recognition residues suggests a common ancestor, and/or extensive horizontal gene transfer, and potential cross-species recognition. In addition, the sporadic spatial organization of the numerous dockerin-containing genes in several of the genomes, suggests the importance of the cellulosome paradigm in the given bacterial species. The information gained in this work may be utilized directly or developed further by genetically engineering and optimizing designer cellulosome systems for enhanced biotechnological biomass deconstruction and biofuel production.
细菌纤维小体是一种细胞外多酶体系,可通过降解植物细胞壁多糖有效地解聚植物生物质。几种纤维素分解菌已经进化出了各种精巧的活性纤维小体模块化结构。我们在此展示了对十几种嗜温梭菌物种的全基因组分析,其中包括已被充分研究和尚未被描述的产纤维小体细菌。我们首次在此报告了纤维小体元件的存在,从而扩展了我们对纤维小体模式在自然界中普遍性的认识。我们通过比较每种细菌物种中的纤维小体基因簇,以及特定纤维小体模块(黏连蛋白和锚定蛋白)在其系统发育关系背景下的保守序列特征,探索了关键纤维小体成分的基因组组织。此外,我们对每种梭菌物种的碳水化合物降解酶的物种特异性组成进行了比较分析,并将每种纤维小体酶归类到特定的碳水化合物活性酶家族中,从而表明它们假定的酶活性(例如纤维素酶、半纤维素酶和果胶酶)。我们的工作为这一大类细菌提供了其多组分纤维小体复合物蓝图的广泛概述。它们的支架蛋白簇和基于锚定蛋白的识别残基的高度相似性表明存在共同祖先,和/或广泛的水平基因转移以及潜在的跨物种识别。此外,几个基因组中众多含锚定蛋白基因的零星空间组织表明纤维小体模式在特定细菌物种中的重要性。这项工作中获得的信息可直接利用,或通过基因工程和优化设计纤维小体系统进一步开发,以增强生物技术生物质解构和生物燃料生产。