Suppr超能文献

纤维丁酸弧菌 FD-1 菌细胞外纤维素酶复合体的复杂性反映了家族相关蛋白-蛋白相互作用的扩展。

Complexity of the Ruminococcus flavefaciens FD-1 cellulosome reflects an expansion of family-related protein-protein interactions.

机构信息

Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel.

CIISA - Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal.

出版信息

Sci Rep. 2017 Feb 10;7:42355. doi: 10.1038/srep42355.

Abstract

Protein-protein interactions play a vital role in cellular processes as exemplified by assembly of the intricate multi-enzyme cellulosome complex. Cellulosomes are assembled by selective high-affinity binding of enzyme-borne dockerin modules to repeated cohesin modules of structural proteins termed scaffoldins. Recent sequencing of the fiber-degrading Ruminococcus flavefaciens FD-1 genome revealed a particularly elaborate cellulosome system. In total, 223 dockerin-bearing ORFs potentially involved in cellulosome assembly and a variety of multi-modular scaffoldins were identified, and the dockerins were classified into six major groups. Here, extensive screening employing three complementary medium- to high-throughput platforms was used to characterize the different cohesin-dockerin specificities. The platforms included (i) cellulose-coated microarray assay, (ii) enzyme-linked immunosorbent assay (ELISA) and (iii) in-vivo co-expression and screening in Escherichia coli. The data revealed a collection of unique cohesin-dockerin interactions and support the functional relevance of dockerin classification into groups. In contrast to observations reported previously, a dual-binding mode is involved in cellulosome cell-surface attachment, whereas single-binding interactions operate for cellulosome integration of enzymes. This sui generis cellulosome model enhances our understanding of the mechanisms governing the remarkable ability of R. flavefaciens to degrade carbohydrates in the bovine rumen and provides a basis for constructing efficient nano-machines applied to biological processes.

摘要

蛋白质-蛋白质相互作用在细胞过程中起着至关重要的作用,例如复杂的多酶纤维小体复合物的组装。纤维小体通过酶携带的 dockerin 模块与结构蛋白的重复粘着(cohesin)模块的选择性高亲和力结合来组装,这些结构蛋白称为支架蛋白。最近对纤维降解瘤胃球菌 FD-1 的基因组进行测序揭示了一个特别精细的纤维小体系统。总共鉴定了 223 个可能参与纤维小体组装的带有 dockerin 的 ORF 和各种多模块支架蛋白,并且将 dockerin 分为六个主要组。在这里,使用三种互补的中高通量平台进行了广泛的筛选,以表征不同粘着蛋白-dockerin 的特异性。这些平台包括(i)纤维素包被的微阵列测定,(ii)酶联免疫吸附测定(ELISA)和(iii)体内共表达和大肠杆菌筛选。这些数据揭示了一系列独特的粘着蛋白-dockerin 相互作用,并支持将 dockerin 分类为不同组的功能相关性。与以前报道的观察结果相反,纤维小体在细胞表面的附着涉及双重结合模式,而单个结合相互作用则用于纤维小体中酶的整合。这种独特的纤维小体模型增强了我们对控制瘤胃球菌在牛瘤胃中降解碳水化合物的非凡能力的机制的理解,并为构建应用于生物过程的高效纳米机器提供了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd6a/5301203/88baf793493a/srep42355-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验