Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel.
Biotechnol Biofuels. 2013 Dec 16;6(1):182. doi: 10.1186/1754-6834-6-182.
Select cellulolytic bacteria produce multi-enzymatic cellulosome complexes that bind to the plant cell wall and catalyze its efficient degradation. The multi-modular interconnecting cellulosomal subunits comprise dockerin-containing enzymes that bind cohesively to cohesin-containing scaffoldins. The organization of the modules into functional polypeptides is achieved by intermodular linkers of different lengths and composition, which provide flexibility to the complex and determine its overall architecture.
Using a synthetic biology approach, we systematically investigated the spatial organization of the scaffoldin subunit and its effect on cellulose hydrolysis by designing a combinatorial library of recombinant trivalent designer scaffoldins, which contain a carbohydrate-binding module (CBM) and 3 divergent cohesin modules. The positions of the individual modules were shuffled into 24 different arrangements of chimaeric scaffoldins. This basic set was further extended into three sub-sets for each arrangement with intermodular linkers ranging from zero (no linkers), 5 (short linkers) and native linkers of 27-35 amino acids (long linkers). Of the 72 possible scaffoldins, 56 were successfully cloned and 45 of them expressed, representing 14 full sets of chimaeric scaffoldins. The resultant 42-component scaffoldin library was used to assemble designer cellulosomes, comprising three model C. thermocellum cellulases. Activities were examined using Avicel as a pure microcrystalline cellulose substrate and pretreated cellulose-enriched wheat straw as a model substrate derived from a native source. All scaffoldin combinations yielded active trivalent designer cellulosome assemblies on both substrates that exceeded the levels of the free enzyme systems. A preferred modular arrangement for the trivalent designer scaffoldin was not observed for the three enzymes used in this study, indicating that they could be integrated at any position in the designer cellulosome without significant effect on cellulose-degrading activity. Designer cellulosomes assembled with the long-linker scaffoldins achieved higher levels of activity, compared to those assembled with short-and no-linker scaffoldins.
The results demonstrate the robustness of the cellulosome system. Long intermodular scaffoldin linkers are preferable, thus leading to enhanced degradation of cellulosic substrates, presumably due to the increased flexibility and spatial positioning of the attached enzymes in the complex. These findings provide a general basis for improved designer cellulosome systems as a platform for bioethanol production.
选择纤维素分解细菌产生多酶纤维素体复合物,与植物细胞壁结合并催化其有效降解。多模块互锁纤维素体亚基由含有 dockerin 的酶组成,这些酶与含有 cohesin 的支架蛋白牢固结合。通过不同长度和组成的模块间连接子,将模块组织成功能多肽,为复合物提供了灵活性,并决定了其整体结构。
使用合成生物学方法,我们通过设计组合文库的重组三价设计支架蛋白,系统地研究了支架蛋白亚基的空间组织及其对纤维素水解的影响,该文库包含一个碳水化合物结合模块 (CBM) 和 3 个不同的 cohesin 模块。单个模块的位置被随机排列到 24 种不同的嵌合支架蛋白排列中。这个基本集合进一步扩展为每个排列的三个子集合,模块间连接子的长度分别为零(无连接子)、5(短连接子)和 27-35 个氨基酸的天然连接子(长连接子)。在 72 种可能的支架蛋白中,成功克隆了 56 种,其中 45 种表达,代表 14 套完整的嵌合支架蛋白。由此产生的 42 成分支架蛋白文库被用于组装设计的细胞体,包含三种模型 C. thermocellum 纤维素酶。使用 Avicel 作为纯微晶纤维素底物和预处理富含纤维素的小麦秸秆作为源自天然来源的模型底物来检测活性。所有支架蛋白组合在两种底物上都产生了活性三价设计细胞体组装体,超过了游离酶系统的水平。在这项研究中使用的三种酶中,没有观察到三价设计支架蛋白的优选模块排列,这表明它们可以在设计细胞体中的任何位置集成,而不会对纤维素降解活性产生重大影响。与使用短连接子和无连接子的支架蛋白组装的设计细胞体相比,使用长连接子支架蛋白组装的设计细胞体具有更高的活性水平。
结果表明细胞体系统具有稳健性。较长的模块间支架蛋白连接子是优选的,从而导致纤维素底物的降解增强,这可能是由于复合物中附着的酶的灵活性和空间定位增加所致。这些发现为改进的设计细胞体系统作为生物乙醇生产平台提供了一般基础。