Suppr超能文献

纤维小体系统独特的组织结构和前所未有的多样性。

Unique organization and unprecedented diversity of the cellulosome system.

作者信息

Zhivin Olga, Dassa Bareket, Moraïs Sarah, Utturkar Sagar M, Brown Steven D, Henrissat Bernard, Lamed Raphael, Bayer Edward A

机构信息

Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.

Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37919 USA.

出版信息

Biotechnol Biofuels. 2017 Sep 7;10:211. doi: 10.1186/s13068-017-0898-6. eCollection 2017.

Abstract

BACKGROUND

is an anaerobic, mesophilic, cellulolytic, cellulosome-producing clostridial bacterium capable of utilizing cellulose and cellobiose as carbon sources. Recently, we sequenced the genome, and subsequent comprehensive bioinformatic analysis, herein reported, revealed an unprecedented number of cellulosome-related components, including 78 cohesin modules scattered among 31 scaffoldins and more than 200 dockerin-bearing ORFs. In terms of numbers, the cellulosome system represents the most intricate, compositionally diverse cellulosome system yet known in nature.

RESULTS

The organization of the cellulosome is unique compared to previously described cellulosome systems. In contrast to all other known cellulosomes, the cohesin types are reversed for all scaffoldins i.e., the type II cohesins are located on the enzyme-integrating primary scaffoldin, whereas the type I cohesins are located on the anchoring scaffoldins. Many of the type II dockerin-bearing ORFs include X60 modules, which are known to stabilize type II cohesin-dockerin interactions. In the present work, we focused on revealing the architectural arrangement of cellulosome structure in this bacterium by examining numerous interactions between the various cohesin and dockerin modules. In total, we cloned and expressed 43 representative cohesins and 27 dockerins. The results revealed various possible architectures of cell-anchored and cell-free cellulosomes, which serve to assemble distinctive cellulosome types via three distinct cohesin-dockerin specificities: type I, type II, and a novel-type designated R (distinct from type III interactions, predominant in ruminococcal cellulosomes).

CONCLUSIONS

The results of this study provide novel insight into the architecture and function of the most intricate and extensive cellulosomal system known today, thereby extending significantly our overall knowledge base of cellulosome systems and their components. The robust cellulosome system of with its unique binding specificities and reversal of cohesin-dockerin types, has served to amend our view of the cellulosome paradigm. Revealing new cellulosomal interactions and arrangements is critical for designing high-efficiency artificial cellulosomes for conversion of plant-derived cellulosic biomass towards improved production of biofuels.

摘要

背景

[细菌名称]是一种厌氧、嗜温、能产生纤维素酶复合体的梭菌,能够利用纤维素和纤维二糖作为碳源。最近,我们对该细菌的基因组进行了测序,随后进行的全面生物信息学分析表明,其纤维素酶复合体相关成分的数量空前,包括散布在31个支架蛋白中的78个粘着素模块以及200多个带有坞蛋白的开放阅读框。就数量而言,该纤维素酶复合体系统是自然界中已知的最为复杂、组成最为多样的纤维素酶复合体系统。

结果

与先前描述的纤维素酶复合体系统相比,[细菌名称]的纤维素酶复合体结构独特。与所有其他已知的纤维素酶复合体不同,所有支架蛋白的粘着素类型是相反的,即II型粘着素位于整合酶的主要支架蛋白上,而I型粘着素位于锚定支架蛋白上。许多带有II型坞蛋白的开放阅读框包含X60模块,已知该模块可稳定II型粘着素-坞蛋白的相互作用。在本研究中,我们通过研究各种粘着素和坞蛋白模块之间的众多相互作用,着重揭示该细菌中纤维素酶复合体结构的架构排列。我们总共克隆并表达了43种代表性粘着素和27种坞蛋白。结果揭示了细胞锚定型和无细胞型纤维素酶复合体的各种可能架构,这些架构通过三种不同的粘着素-坞蛋白特异性(I型、II型和一种新指定的R型,不同于在瘤胃球菌纤维素酶复合体中占主导的III型相互作用)来组装不同类型的纤维素酶复合体。

结论

本研究结果为当今已知最复杂、最广泛的纤维素酶复合体系统的架构和功能提供了新见解,从而显著扩展了我们对纤维素酶复合体系统及其组件的整体知识库。[细菌名称]强大的纤维素酶复合体系统具有独特的结合特异性和粘着素-坞蛋白类型的反转,有助于修正我们对纤维素酶复合体范式的看法。揭示新的纤维素酶复合体相互作用和排列对于设计高效人工纤维素酶复合体至关重要,这些复合体可将植物来源的纤维素生物质转化为更高产量的生物燃料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9afd/5590126/f7986b76cf9b/13068_2017_898_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验