Faber G S, Koopman A S, Kingma I, Chang C C, Dennerlein J T, van Dieën J H
Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Liberty Mutual Research Institute for Safety, Hopkinton, MA, USA.
Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands.
J Biomech. 2018 Mar 21;70:235-241. doi: 10.1016/j.jbiomech.2017.10.006. Epub 2017 Oct 25.
Hand forces (HFs) are commonly measured during biomechanical assessment of manual materials handling; however, it is often a challenge to directly measure HFs in field studies. Therefore, in a previous study we proposed a HF estimation method based on ground reaction forces (GRFs) and body segment accelerations and tested it with laboratory equipment: GFRs were measured with force plates (FPs) and segment accelerations were measured using optical motion capture (OMC). In the current study, we evaluated the HF estimation method based on an ambulatory measurement system, consisting of inertial motion capture (IMC) and instrumented force shoes (FSs). Sixteen participants lifted and carried a 10-kg crate from ground level while 3D full-body kinematics were measured using OMC and IMC, and 3D GRFs were measured using FPs and FSs. We estimated 3D hand force vectors based on: (1) FP+OMC, (2) FP+IMC and (3) FS+IMC. We calculated the root-mean-square differences (RMSDs) between the estimated HFs to reference HFs calculated based on crate kinematics and the GRFs of a FP that the crate was lifted from. Averaged over subjects and across 3D force directions, the HF RMSD ranged between 10-15N when using the laboratory equipment (FP + OMC), 11-18N when using the IMC instead of OMC data (FP+IMC), and 17-21N when using the FSs in combination with IMC (FS + IMC). This error is regarded acceptable for the assessment of spinal loading during manual lifting, as it would results in less than 5% error in peak moment estimates.
在手工搬运材料的生物力学评估过程中,通常会对手部力量(HFs)进行测量;然而,在实地研究中直接测量手部力量往往是一项挑战。因此,在之前的一项研究中,我们提出了一种基于地面反作用力(GRFs)和身体各节段加速度的手部力量估计方法,并使用实验室设备对其进行了测试:使用测力板(FPs)测量地面反作用力,使用光学运动捕捉(OMC)测量节段加速度。在当前的研究中,我们基于一个动态测量系统对手部力量估计方法进行了评估,该系统由惯性运动捕捉(IMC)和测力鞋(FSs)组成。16名参与者从地面提起并搬运一个10千克的箱子,同时使用OMC和IMC测量三维全身运动学数据,使用FPs和FSs测量三维地面反作用力。我们基于以下三种方式估计三维手部力量矢量:(1)测力板+光学运动捕捉(FP+OMC),(2)测力板+惯性运动捕捉(FP+IMC),以及(3)测力鞋+惯性运动捕捉(FS+IMC)。我们计算了估计的手部力量与基于箱子运动学和箱子被提起时所用测力板的地面反作用力计算得到的参考手部力量之间的均方根差(RMSDs)。在受试者和三维力方向上进行平均后,当使用实验室设备(测力板+光学运动捕捉,FP + OMC)时,手部力量均方根差在10 - 15牛之间;当使用惯性运动捕捉数据而非光学运动捕捉数据(测力板+惯性运动捕捉,FP+IMC)时,均方根差在11 - 18牛之间;当使用测力鞋与惯性运动捕捉相结合(FS + IMC)时,均方根差在17 - 21牛之间。对于手动提举过程中脊柱负荷的评估而言,这种误差被认为是可以接受的,因为它在峰值力矩估计中产生的误差小于5%。