Suppr超能文献

根系区域排铝及维持养分吸收是番茄耐铝性的主要机制。 (注:原文中“L.”可能有误,推测为“Lycopersicon esculentum”即番茄,这里按照推测的完整植物名翻译,若“L.”另有准确指代,请根据实际情况调整。)

Aluminum exclusion from root zone and maintenance of nutrient uptake are principal mechanisms of Al tolerance in L.

作者信息

Kichigina Natalia E, Puhalsky Jan V, Shaposhnikov Aleksander I, Azarova Tatiana S, Makarova Natalia M, Loskutov Svyatoslav I, Safronova Vera I, Tikhonovich Igor A, Vishnyakova Margarita A, Semenova Elena V, Kosareva Irina A, Belimov Andrey A

机构信息

All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh. 3, Pushkin, Saint-Petersburg, Russian Federation 196608.

Saint-Petersburg State University, University Embankment, Saint-Petersburg, Russian Federation 199034.

出版信息

Physiol Mol Biol Plants. 2017 Oct;23(4):851-863. doi: 10.1007/s12298-017-0469-0. Epub 2017 Sep 18.

Abstract

Our study aimed to evaluate intraspecific variability of pea ( L.) in Al tolerance and to reveal mechanisms underlying genotypic differences in this trait. At the first stage, 106 pea genotypes were screened for Al tolerance using root re-elongation assay based on staining with eriochrome cyanine R. The root re-elongation zone varied from 0.5 mm to 14 mm and relationships between Al tolerance and provenance or phenotypic traits of genotypes were found. Tolerance index (TI), calculated as a biomass ratio of Al-treated and non-treated contrasting genotypes grown in hydroponics for 10 days, varied from 30% to 92% for roots and from 38% to 90% for shoots. TI did not correlate with root or shoot Al content, but correlated positively with increasing pH and negatively with residual Al concentration in nutrient solution in the end of experiments. Root exudation of organic acid anions (mostly acetate, citrate, lactate, pyroglutamate, pyruvate and succinate) significantly increased in several Al-treated genotypes, but did not correlate with TI. Al-treatment decreased Ca, Co, Cu, K, Mg, Mn, Mo, Ni, S and Zn contents in roots and/or shoots, whereas contents of several elements (P, B, Fe and Mo in roots and B and Fe in shoots) increased, suggesting that Al toxicity induced substantial disturbances in uptake and translocation of nutrients. Nutritional disturbances were more pronounced in Al sensitive genotypes. In conclusion, pea has a high intraspecific variability in Al tolerance and this trait is associated with provenance and phenotypic properties of plants. Transformation of Al to unavailable (insoluble) forms in the root zone and the ability to maintain nutrient uptake are considered to be important mechanisms of Al tolerance in this plant species.

摘要

我们的研究旨在评估豌豆(L.)在耐铝性方面的种内变异性,并揭示该性状基因型差异背后的机制。在第一阶段,基于依来铬氰蓝R染色的根再伸长试验,对106个豌豆基因型进行了耐铝性筛选。根再伸长区从0.5毫米到14毫米不等,并且发现了耐铝性与基因型的来源或表型性状之间的关系。耐铝指数(TI),计算为水培10天的铝处理和未处理的对照基因型的生物量比,根的TI从30%到92%不等,地上部从38%到90%不等。TI与根或地上部的铝含量无关,但与pH值升高呈正相关,与实验结束时营养液中的残留铝浓度呈负相关。在几个铝处理的基因型中,有机酸阴离子(主要是乙酸盐、柠檬酸盐、乳酸盐、焦谷氨酸盐、丙酮酸盐和琥珀酸盐)的根分泌物显著增加,但与TI无关。铝处理降低了根和/或地上部中钙、钴、铜、钾、镁、锰、钼、镍、硫和锌的含量,而几种元素(根中的磷、硼、铁和钼以及地上部中的硼和铁)的含量增加,这表明铝毒性引起了营养物质吸收和转运的显著紊乱。营养紊乱在铝敏感基因型中更为明显。总之,豌豆在耐铝性方面具有较高的种内变异性,并且该性状与植物的来源和表型特性相关。铝在根区转化为不可利用(不溶性)形式以及维持营养吸收的能力被认为是该植物物种耐铝性的重要机制。

相似文献

1
Aluminum exclusion from root zone and maintenance of nutrient uptake are principal mechanisms of Al tolerance in L.
Physiol Mol Biol Plants. 2017 Oct;23(4):851-863. doi: 10.1007/s12298-017-0469-0. Epub 2017 Sep 18.
6
Genotypic variation among chickpea and wild Cicer spp. in nutrient uptake with increasing concentration of solution Al at low pH.
Plant Physiol Biochem. 2020 Dec;157:390-401. doi: 10.1016/j.plaphy.2020.10.034. Epub 2020 Nov 1.
7
Genotypic variation of the response to cadmium toxicity in Pisum sativum L.
J Exp Bot. 2005 Jan;56(409):167-78. doi: 10.1093/jxb/eri017. Epub 2004 Nov 8.
10
Interactions between aluminium, iron and silicon in Cucumber sativus L. grown under acidic conditions.
J Plant Physiol. 2017 Nov;218:100-108. doi: 10.1016/j.jplph.2017.08.003. Epub 2017 Aug 4.

引用本文的文献

1
Aluminum Stress Response Is Regulated Through a miR156/SPL13 Module in .
Genes (Basel). 2025 Jun 27;16(7):751. doi: 10.3390/genes16070751.
2
The key metabolic pathway of roots and leaves responses in Arachis hypogaea under Al toxicity stress.
BMC Plant Biol. 2025 Apr 7;25(1):439. doi: 10.1186/s12870-025-06460-7.
4
Mitigating aluminum toxicity and promoting plant resilience in acidic soil with TLL1.
Front Plant Sci. 2024 Jun 20;15:1423617. doi: 10.3389/fpls.2024.1423617. eCollection 2024.
8
Aluminum in plant: Benefits, toxicity and tolerance mechanisms.
Front Plant Sci. 2023 Jan 13;13:1085998. doi: 10.3389/fpls.2022.1085998. eCollection 2022.
10
Proteolytic and Structural Changes in Rye and Triticale Roots under Aluminum Stress.
Cells. 2021 Nov 5;10(11):3046. doi: 10.3390/cells10113046.

本文引用的文献

1
Role of dynamics of intracellular calcium in aluminium-toxicity syndrome.
New Phytol. 2003 Aug;159(2):295-314. doi: 10.1046/j.1469-8137.2003.00821.x.
4
The role of aluminum sensing and signaling in plant aluminum resistance.
J Integr Plant Biol. 2014 Mar;56(3):221-30. doi: 10.1111/jipb.12162. Epub 2014 Mar 2.
5
Aluminium-phosphate interactions in the rhizosphere of two bean species: Phaseolus lunatus L. and Phaseolus vulgaris L.
J Sci Food Agric. 2013 Dec;93(15):3891-6. doi: 10.1002/jsfa.6392. Epub 2013 Oct 16.
6
Molecular and physiological analysis of Al³⁺ and H⁺ rhizotoxicities at moderately acidic conditions.
Plant Physiol. 2013 Sep;163(1):180-92. doi: 10.1104/pp.113.222893. Epub 2013 Jul 9.
9
Transcriptional regulation of aluminium tolerance genes.
Trends Plant Sci. 2012 Jun;17(6):341-8. doi: 10.1016/j.tplants.2012.02.008. Epub 2012 Mar 27.
10
Aluminum toxicity recovery processes in root apices. Possible association with oxidative stress.
Plant Sci. 2012 Apr;185-186:1-8. doi: 10.1016/j.plantsci.2011.07.019. Epub 2011 Aug 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验