State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, South China Agricultural University, Guangzhou 510642, People's Republic of China.
Plant Physiol. 2013 Mar;161(3):1347-61. doi: 10.1104/pp.112.208934. Epub 2013 Jan 22.
Low pH, aluminum (Al) toxicity, and low phosphorus (P) often coexist and are heterogeneously distributed in acid soils. To date, the underlying mechanisms of crop adaptation to these multiple factors on acid soils remain poorly understood. In this study, we found that P addition to acid soils could stimulate Al tolerance, especially for the P-efficient genotype HN89. Subsequent hydroponic studies demonstrated that solution pH, Al, and P levels coordinately altered soybean (Glycine max) root growth and malate exudation. Interestingly, HN89 released more malate under conditions mimicking acid soils (low pH, +P, and +Al), suggesting that root malate exudation might be critical for soybean adaptation to both Al toxicity and P deficiency on acid soils. GmALMT1, a soybean malate transporter gene, was cloned from the Al-treated root tips of HN89. Like root malate exudation, GmALMT1 expression was also pH dependent, being suppressed by low pH but enhanced by Al plus P addition in roots of HN89. Quantitative real-time PCR, transient expression of a GmALMT1-yellow fluorescent protein chimera in Arabidopsis protoplasts, and electrophysiological analysis of Xenopus laevis oocytes expressing GmALMT1 demonstrated that GmALMT1 encodes a root cell plasma membrane transporter that mediates malate efflux in an extracellular pH-dependent and Al-independent manner. Overexpression of GmALMT1 in transgenic Arabidopsis, as well as overexpression and knockdown of GmALMT1 in transgenic soybean hairy roots, indicated that GmALMT1-mediated root malate efflux does underlie soybean Al tolerance. Taken together, our results suggest that malate exudation is an important component of soybean adaptation to acid soils and is coordinately regulated by three factors, pH, Al, and P, through the regulation of GmALMT1 expression and GmALMT1 function.
低 pH 值、铝(Al)毒性和低磷(P)通常共存且在酸性土壤中呈异质分布。迄今为止,作物适应酸性土壤中这些多种因素的潜在机制仍知之甚少。在这项研究中,我们发现向酸性土壤中添加 P 可以刺激 Al 耐受性,特别是对 P 高效基因型 HN89 而言。随后的水培研究表明,溶液 pH 值、Al 和 P 水平共同改变了大豆(Glycine max)根系生长和苹果酸分泌。有趣的是,HN89 在模拟酸性土壤条件(低 pH 值、+P 和 +Al)下释放出更多的苹果酸,这表明根苹果酸分泌对于大豆适应酸性土壤中的 Al 毒性和 P 缺乏可能至关重要。从 HN89 的 Al 处理根尖克隆了大豆苹果酸转运蛋白基因 GmALMT1。与根苹果酸分泌一样,GmALMT1 的表达也依赖于 pH 值,在低 pH 值下受到抑制,但在 HN89 的根中受到 Al 加 P 处理的增强。实时定量 PCR、在拟南芥原生质体中转瞬即逝的 GmALMT1-黄色荧光蛋白嵌合体的表达和表达 GmALMT1 的非洲爪蟾卵母细胞的电生理分析表明,GmALMT1 编码一种根细胞质膜转运蛋白,以细胞外 pH 值依赖和 Al 独立的方式介导苹果酸外排。在转基因拟南芥中过表达 GmALMT1 以及在转基因大豆毛状根中过表达和敲低 GmALMT1 表明,GmALMT1 介导的根苹果酸外排确实是大豆 Al 耐受性的基础。总之,我们的研究结果表明,苹果酸分泌是大豆适应酸性土壤的一个重要组成部分,通过调节 GmALMT1 表达和 GmALMT1 功能,由 pH 值、Al 和 P 三个因素协同调节。