Suppr超能文献

铝毒胁迫下花生根系和叶片响应的关键代谢途径。

The key metabolic pathway of roots and leaves responses in Arachis hypogaea under Al toxicity stress.

作者信息

Shi Jianning, Zhou Yishuang, Yang Shaoxia, Xue Yingbin, Wang Yanyan, Hu Hanqiao, Liu Ying

机构信息

Department of Agronomy, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China.

出版信息

BMC Plant Biol. 2025 Apr 7;25(1):439. doi: 10.1186/s12870-025-06460-7.

Abstract

BACKGROUND

Aluminum (Al) toxicity inhibits plant growth and alters gene expression and metabolite profiles. However, the molecular mechanisms underlying the effects of Al toxicity on peanut plants remain unclear. Transcriptome and metabolome analyses were conducted to investigate the responses of peanut leaves and roots to Al toxicity.

RESULTS

Al toxicity significantly inhibited peanut growth, disrupted antioxidant enzyme systems in roots and leaves, and impaired nutrient absorption. Under Al toxicity stress, the content of indole-3-acetic acid-aspartate (IAA-Asp) decreased by 23.94% in leaves but increased by 12.91% in roots. Methyl jasmonate (MeJA) levels in leaves increased dramatically by 2642.86%. Methyl salicylate (MeSA) content in leaves and roots increased significantly by 140.00% and 472.22%, respectively. Conversely, isopentenyl adenosine (IPA) content decreased by 78.95% in leaves and 20.66% in roots. Transcriptome analysis identified 5831 differentially expressed genes (DEGs) in leaves and 6405 DEGs in roots, whereas metabolomics analysis revealed 210 differentially accumulated metabolites (DAMs) in leaves and 240 DAMs in roots. Under Al toxicity stress, both leaves and roots were significantly enriched in the "linoleic acid metabolism" pathway. Genes such as lipoxygenase LOX1-5 and LOX2S were differentially expressed, and metabolites, including linoleic acid and its oxidized derivatives, were differentially accumulated, mitigating oxidative stress.

CONCLUSIONS

This study elaborates on the potential complex physiological and molecular mechanisms of peanuts under aluminum toxicity stress, and highlights the importance of linoleic acid metabolism in coping with aluminum toxicity. These findings enhance our understanding of the impact of aluminum toxicity on peanut development and the response of key metabolic pathways, providing potential molecular targets for genetic engineering to improve crop resistance to aluminum stress.

摘要

背景

铝(Al)毒性会抑制植物生长,并改变基因表达和代谢物谱。然而,铝毒性对花生植株影响的分子机制仍不清楚。进行了转录组和代谢组分析,以研究花生叶片和根系对铝毒性的反应。

结果

铝毒性显著抑制花生生长,破坏根系和叶片中的抗氧化酶系统,并损害养分吸收。在铝毒性胁迫下,叶片中吲哚 - 3 - 乙酸 - 天冬氨酸(IAA - Asp)的含量下降了23.94%,而根系中则增加了12.91%。叶片中茉莉酸甲酯(MeJA)水平急剧增加了2642.86%。叶片和根系中水杨酸甲酯(MeSA)含量分别显著增加了140.00%和472.22%。相反,叶片中异戊烯基腺苷(IPA)含量下降了78.95%,根系中下降了20.66%。转录组分析在叶片中鉴定出5831个差异表达基因(DEGs),在根系中鉴定出6405个DEGs,而代谢组学分析在叶片中揭示了210种差异积累代谢物(DAMs),在根系中揭示了240种DAMs。在铝毒性胁迫下,叶片和根系在“亚油酸代谢”途径中均显著富集。脂氧合酶LOX1 - 5和LOX2S等基因差异表达,包括亚油酸及其氧化衍生物在内的代谢物差异积累,减轻了氧化应激。

结论

本研究阐述了花生在铝毒性胁迫下潜在的复杂生理和分子机制,并突出了亚油酸代谢在应对铝毒性中的重要性。这些发现加深了我们对铝毒性对花生发育的影响以及关键代谢途径反应的理解,为通过基因工程提高作物对铝胁迫的抗性提供了潜在的分子靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28fc/11974018/736fc884ccb1/12870_2025_6460_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验