Dombert Benjamin, Balk Stefanie, Lüningschrör Patrick, Moradi Mehri, Sivadasan Rajeeve, Saal-Bauernschubert Lena, Jablonka Sibylle
Institute of Clinical Neurobiology, University of Wuerzburg, Wuerzburg, Germany.
Front Mol Neurosci. 2017 Oct 30;10:346. doi: 10.3389/fnmol.2017.00346. eCollection 2017.
Spontaneous Ca transients and actin dynamics in primary motoneurons correspond to cellular differentiation such as axon elongation and growth cone formation. Brain-derived neurotrophic factor (BDNF) and its receptor trkB support both motoneuron survival and synaptic differentiation. However, in motoneurons effects of BDNF/trkB signaling on spontaneous Ca influx and actin dynamics at axonal growth cones are not fully unraveled. In our study we addressed the question how neurotrophic factor signaling corresponds to cell autonomous excitability and growth cone formation. Primary motoneurons from mouse embryos were cultured on the synapse specific, β2-chain containing laminin isoform (221) regulating axon elongation through spontaneous Ca transients that are in turn induced by enhanced clustering of N-type specific voltage-gated Ca channels (Ca2.2) in axonal growth cones. TrkB-deficient ( mouse motoneurons which express no full-length trkB receptor and wildtype motoneurons cultured without BDNF exhibited reduced spontaneous Ca transients that corresponded to altered axon elongation and defects in growth cone morphology which was accompanied by changes in the local actin cytoskeleton. , the acute application of BDNF resulted in the induction of spontaneous Ca transients and Ca2.2 clustering in motor growth cones, as well as the activation of trkB downstream signaling cascades which promoted the stabilization of β-actin via the LIM kinase pathway and phosphorylation of profilin at Tyr129. Finally, we identified a mutual regulation of neuronal excitability and actin dynamics in axonal growth cones of embryonic motoneurons cultured on laminin-221/211. Impaired excitability resulted in dysregulated axon extension and local actin cytoskeleton, whereas upon β-actin knockdown Ca2.2 clustering was affected. We conclude from our data that in embryonic motoneurons BDNF/trkB signaling contributes to axon elongation and growth cone formation through changes in the local actin cytoskeleton accompanied by increased Ca2.2 clustering and local calcium transients. These findings may help to explore cellular mechanisms which might be dysregulated during maturation of embryonic motoneurons leading to motoneuron disease.
初级运动神经元中的自发钙瞬变和肌动蛋白动力学与细胞分化相关,如轴突伸长和生长锥形成。脑源性神经营养因子(BDNF)及其受体trkB既支持运动神经元存活,也支持突触分化。然而,在运动神经元中,BDNF/trkB信号对轴突生长锥处自发钙内流和肌动蛋白动力学的影响尚未完全阐明。在我们的研究中,我们探讨了神经营养因子信号如何与细胞自主兴奋性和生长锥形成相对应。从小鼠胚胎中分离出的初级运动神经元,培养在含有突触特异性β2链的层粘连蛋白异构体(221)上,该异构体通过自发钙瞬变调节轴突伸长,而自发钙瞬变又是由轴突生长锥中N型特异性电压门控钙通道(Ca2.2)的聚集增强所诱导。缺乏TrkB的小鼠运动神经元(不表达全长trkB受体)和在无BDNF条件下培养的野生型运动神经元,其自发钙瞬变减少,这与轴突伸长改变和生长锥形态缺陷相对应,同时伴随着局部肌动蛋白细胞骨架的变化。此外,急性应用BDNF可诱导运动生长锥中的自发钙瞬变和Ca2.2聚集,以及trkB下游信号级联的激活,该信号级联通过LIM激酶途径促进β-肌动蛋白的稳定和在Tyr129处对丝切蛋白的磷酸化。最后,我们确定了在层粘连蛋白-221/211上培养的胚胎运动神经元轴突生长锥中,神经元兴奋性和肌动蛋白动力学之间的相互调节。兴奋性受损导致轴突延伸和局部肌动蛋白细胞骨架失调,而在β-肌动蛋白敲低后,Ca2.2聚集受到影响。我们从数据中得出结论,在胚胎运动神经元中,BDNF/trkB信号通过局部肌动蛋白细胞骨架的变化、Ca2.2聚集增加和局部钙瞬变,促进轴突伸长和生长锥形成。这些发现可能有助于探索在胚胎运动神经元成熟过程中可能失调并导致运动神经元疾病的细胞机制。