Suppr超能文献

直接重编程而非基于诱导多能干细胞的重编程会维持人类运动神经元的衰老特征。

Direct Reprogramming Rather than iPSC-Based Reprogramming Maintains Aging Hallmarks in Human Motor Neurons.

作者信息

Tang Yu, Liu Meng-Lu, Zang Tong, Zhang Chun-Li

机构信息

Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States.

Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States.

出版信息

Front Mol Neurosci. 2017 Nov 2;10:359. doi: 10.3389/fnmol.2017.00359. eCollection 2017.

Abstract

generation of motor neurons (MNs) is a promising approach for modeling motor neuron diseases (MNDs) such as amyotrophic lateral sclerosis (ALS). As aging is a leading risk factor for the development of neurodegeneration, it is important to recapitulate age-related characteristics by using MNs at pathogenic ages. So far, cell reprogramming through induced pluripotent stem cells (iPSCs) and direct reprogramming from primary fibroblasts are two major strategies to obtain populations of MNs. While iPSC generation must go across the epigenetic landscape toward the pluripotent state, directly converted MNs might have the advantage of preserving aging-associated features from fibroblast donors. In this study, we confirmed that human iPSCs reset the aging status derived from their old donors, such as telomere attrition and cellular senescence. We then applied a set of transcription factors to induce MNs from either primary fibroblasts or iPSC-derived neural progenitor cells. The results revealed that directly reprogrammed MNs, rather than iPSC-derived MNs, maintained the aging hallmarks of old donors, including extensive DNA damage, loss of heterochromatin and nuclear organization, and increased SA-β-Gal activity. iPSC-derived MNs did not regain those aging memories from old donors. Collectively, our study indicates rejuvenation in the iPSC-based model, as well as aging maintenance in direct reprogramming of MNs. As such, the directly reprogrammed MNs may be more suitable for modeling the late-onset pathogenesis of MNDs.

摘要

运动神经元(MNs)的生成是一种用于模拟运动神经元疾病(MNDs)(如肌萎缩侧索硬化症(ALS))的有前景的方法。由于衰老作为神经退行性变发展的主要风险因素,利用致病年龄阶段的运动神经元来重现与年龄相关的特征很重要。到目前为止,通过诱导多能干细胞(iPSCs)进行细胞重编程以及从原代成纤维细胞直接重编程是获得运动神经元群体的两种主要策略。虽然诱导多能干细胞的生成必须跨越表观遗传景观朝着多能状态发展,但直接转化的运动神经元可能具有保留来自成纤维细胞供体的与衰老相关特征的优势。在本研究中,我们证实人类诱导多能干细胞重置了源自老年供体的衰老状态,如端粒磨损和细胞衰老。然后,我们应用一组转录因子从原代成纤维细胞或诱导多能干细胞来源的神经祖细胞诱导生成运动神经元。结果显示,直接重编程的运动神经元而非诱导多能干细胞来源的运动神经元维持了老年供体的衰老特征,包括广泛的DNA损伤、异染色质和核组织的丧失以及衰老相关β - 半乳糖苷酶(SA - β - Gal)活性增加。诱导多能干细胞来源的运动神经元并未从老年供体重新获得那些衰老记忆。总体而言,我们的研究表明基于诱导多能干细胞模型中的恢复活力以及运动神经元直接重编程中的衰老维持。因此,直接重编程的运动神经元可能更适合用于模拟运动神经元疾病的迟发性发病机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82f3/5676779/dd43ab604a00/fnmol-10-00359-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验