Estación Experimental del Zaidín (CSIC), Department of Soil Microbiology and Symbiotic Systems, C/ Profesor Albareda 1, 18008 Granada, Spain.
Department of Environmental Biology, Agricultural Chemistry and Biology Group-CMI Roullier, Faculty of Sciences, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
Plant Cell Physiol. 2018 Feb 1;59(2):248-261. doi: 10.1093/pcp/pcx178.
Jasmonic acid (JA) and arbuscular mycorrhizal (AM) symbioses are known to protect plants against abiotic and biotic stresses, but are also involved in the regulation of root hydraulic conductance (L). The objective of this experiment was to elucidate the role of JA in the water relations and hormonal regulation of AM plants under drought by using tomato plants defective in the synthesis of JA (def-1). Our results showed that JA is involved in the uptake and transport of water through its effect on both physiological parameters (stomatal conductance and L) and molecular parameters, mainly by controlling the expression and abundance of aquaporins. We observed that def-1 plants increased the expression of seven plant aquaporin genes under well-watered conditions in the absence of AM fungus, which partly explain the increment of L by this mutation under well-watered conditions. In addition, the effects of the AM symbiosis on plants were modified by the def-1 mutation, with the expression of some aquaporins and plant hormone concentration being disturbed. On the other hand, methyl salicylate (MeSA) content was increased in non-mycorrhizal def-1 plants, suggesting that MeSA and JA can act together in the regulation of L. In a complementary experiment, it was found that exogenous MeSA increased L, confirming our hypothesis. Likewise, we confirmed that JA, ABA and SA are hormones involved in plant mechanisms to cope with stressful situations, their concentrations being controlled by the AM symbiosis. In conclusion, under well-watered conditions, the def-1 mutation mimics the effects of AM symbiosis, but under drought conditions the def-1 mutation changed the effects of the AM symbiosis on plants.
茉莉酸(JA)和丛枝菌根(AM)共生关系已知可保护植物免受非生物和生物胁迫,但也参与根系水力传导(L)的调节。本实验的目的是通过使用番茄植物中 JA 合成缺陷(def-1)来阐明 JA 在干旱条件下 AM 植物水分关系和激素调节中的作用。我们的结果表明,JA 通过影响生理参数(气孔导度和 L)和分子参数,主要通过控制水通道蛋白的表达和丰度,参与水分的吸收和运输。我们观察到,在没有 AM 真菌的情况下,def-1 植物在水分充足的条件下增加了七种植物水通道蛋白基因的表达,这部分解释了该突变在水分充足条件下对 L 的增加。此外,AM 共生关系对植物的影响因 def-1 突变而改变,一些水通道蛋白和植物激素浓度的表达受到干扰。另一方面,非菌根 def-1 植物中甲基水杨酸(MeSA)含量增加,表明 MeSA 和 JA 可以共同作用于 L 的调节。在一项补充实验中,发现外源 MeSA 增加了 L,证实了我们的假设。同样,我们证实了 JA、ABA 和 SA 是参与植物应对应激情况机制的激素,其浓度受 AM 共生关系的控制。总之,在水分充足的条件下,def-1 突变模拟了 AM 共生关系的影响,但在干旱条件下,def-1 突变改变了 AM 共生关系对植物的影响。