CSIRO Manufacturing, Clayton, Victoria, 3108, Australia.
Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia.
Small. 2018 Jan;14(3). doi: 10.1002/smll.201702958. Epub 2017 Nov 23.
Plants have a complex passive fluid transport system capable of internalizing small molecules from the environment, and this system offers an ideal route for augmenting plants with functional nanomaterials. Current plant augmentation techniques use pre-formed nanomaterials and permeabilizing agents or plant cuttings. A so far unexplored concept is the formation of the functional material, in situ, from precursors small enough to be passively internalized through the roots without harming the plants. Metal-organic frameworks are ideal for in situ synthesis as they are composed of metal ions coordinated with organic ligands and have recently been mineralized around single-celled organisms in mild aqueous conditions. Herein, the synthesis of two types of metal-organic frameworks, zinc(2-methylimidazole) and lanthanide (terephthalate) , are reported inside a variety of plants. In situ synchrotron experiments help elucidate the formation kinetics and crystal phases of the nano-biohybrid plants. Plants augmented with luminescent metal-organic frameworks are utilized for small molecule sensing, although other applications, such as pathogen sensing, proton conductive plants, improved CO capture, bacteria-free nitrogen fixation, drought and fungi-resistance, and enhanced photosynthesis and photocatalysis, are foreseeable. Overall, the generation of functional materials inside of fully intact plants could lead to more complex nano-biohybrid sensors and organisms augmented with superior performance characteristics.
植物具有复杂的被动流体运输系统,能够将环境中的小分子内化,这为植物提供了一个理想的途径来增强功能纳米材料。目前的植物增强技术使用预先形成的纳米材料和渗透剂或植物插条。一个迄今为止尚未探索的概念是,从足够小的前体在原位形成功能材料,这些前体可以通过根部被动内化,而不会伤害植物。金属有机骨架非常适合原位合成,因为它们由与有机配体配位的金属离子组成,并且最近在温和的水条件下已经在单细胞生物周围矿化。在此,报道了在多种植物内部合成两种类型的金属有机骨架,即锌(2-甲基咪唑)和镧系元素(对苯二甲酸酯)。原位同步辐射实验有助于阐明纳米生物杂种植物的形成动力学和晶体相。用发光金属有机骨架增强的植物被用于小分子传感,尽管可以预见其他应用,例如病原体传感、质子导电植物、提高 CO 捕获、无细菌固氮、耐旱和抗真菌以及增强光合作用和光催化。总的来说,在完整无损的植物内部生成功能材料可能会导致更复杂的纳米生物杂种传感器和具有优越性能特征的增强型生物体。