Institute of Intelligent System and Bioinformatics, College of Automation, Harbin Engineering University, NO.145-1, Nantong Street, Nangang District, Harbin, 150001, Heilongjiang, China.
Center for Computational Biology and Bioinformatics, School of Medicine, Indiana University, 410 W. 10th St., Suite 5000, Indianapolis, IN, 46202, USA.
Stat Med. 2018 Feb 20;37(4):673-686. doi: 10.1002/sim.7545. Epub 2017 Nov 23.
Drug-drug interactions (DDIs) are a common cause of adverse drug events (ADEs). The electronic medical record (EMR) database and the FDA's adverse event reporting system (FAERS) database are the major data sources for mining and testing the ADE associated DDI signals. Most DDI data mining methods focus on pair-wise drug interactions, and methods to detect high-dimensional DDIs in medical databases are lacking. In this paper, we propose 2 novel mixture drug-count response models for detecting high-dimensional drug combinations that induce myopathy. The "count" indicates the number of drugs in a combination. One model is called fixed probability mixture drug-count response model with a maximum risk threshold (FMDRM-MRT). The other model is called count-dependent probability mixture drug-count response model with a maximum risk threshold (CMDRM-MRT), in which the mixture probability is count dependent. Compared with the previous mixture drug-count response model (MDRM) developed by our group, these 2 new models show a better likelihood in detecting high-dimensional drug combinatory effects on myopathy. CMDRM-MRT identified and validated (54; 374; 637; 442; 131) 2-way to 6-way drug interactions, respectively, which induce myopathy in both EMR and FAERS databases. We further demonstrate FAERS data capture much higher maximum myopathy risk than EMR data do. The consistency of 2 mixture models' parameters and local false discovery rate estimates are evaluated through statistical simulation studies.
药物-药物相互作用(DDI)是不良药物事件(ADE)的常见原因。电子病历(EMR)数据库和 FDA 的不良事件报告系统(FAERS)数据库是挖掘和测试与 ADE 相关的 DDI 信号的主要数据源。大多数 DDI 数据挖掘方法侧重于药物对药物的相互作用,而缺乏在医学数据库中检测高维 DDI 的方法。在本文中,我们提出了 2 种新的混合药物计数反应模型,用于检测引起肌病的高维药物组合。“计数”表示组合中药物的数量。一种模型称为具有最大风险阈值的固定概率混合药物计数反应模型(FMDRM-MRT)。另一种模型称为具有最大风险阈值的依赖计数概率混合药物计数反应模型(CMDRM-MRT),其中混合概率与计数有关。与我们小组之前开发的混合药物计数反应模型(MDRM)相比,这 2 个新模型在检测高维药物组合对肌病的影响方面表现出更好的可能性。CMDRM-MRT 分别在 EMR 和 FAERS 数据库中识别和验证了(54;374;637;442;131)2 到 6 种药物相互作用,这些相互作用会引起肌病。我们进一步证明 FAERS 数据捕捉到的最大肌病风险远高于 EMR 数据。通过统计模拟研究评估了 2 种混合模型参数和局部假发现率估计的一致性。