Suppr超能文献

肌病的高维药物组合效应的混合药物计数反应模型。

Mixture drug-count response model for the high-dimensional drug combinatory effect on myopathy.

机构信息

Institute of Intelligent System and Bioinformatics, College of Automation, Harbin Engineering University, NO.145-1, Nantong Street, Nangang District, Harbin, 150001, Heilongjiang, China.

Center for Computational Biology and Bioinformatics, School of Medicine, Indiana University, 410 W. 10th St., Suite 5000, Indianapolis, IN, 46202, USA.

出版信息

Stat Med. 2018 Feb 20;37(4):673-686. doi: 10.1002/sim.7545. Epub 2017 Nov 23.

Abstract

Drug-drug interactions (DDIs) are a common cause of adverse drug events (ADEs). The electronic medical record (EMR) database and the FDA's adverse event reporting system (FAERS) database are the major data sources for mining and testing the ADE associated DDI signals. Most DDI data mining methods focus on pair-wise drug interactions, and methods to detect high-dimensional DDIs in medical databases are lacking. In this paper, we propose 2 novel mixture drug-count response models for detecting high-dimensional drug combinations that induce myopathy. The "count" indicates the number of drugs in a combination. One model is called fixed probability mixture drug-count response model with a maximum risk threshold (FMDRM-MRT). The other model is called count-dependent probability mixture drug-count response model with a maximum risk threshold (CMDRM-MRT), in which the mixture probability is count dependent. Compared with the previous mixture drug-count response model (MDRM) developed by our group, these 2 new models show a better likelihood in detecting high-dimensional drug combinatory effects on myopathy. CMDRM-MRT identified and validated (54; 374; 637; 442; 131) 2-way to 6-way drug interactions, respectively, which induce myopathy in both EMR and FAERS databases. We further demonstrate FAERS data capture much higher maximum myopathy risk than EMR data do. The consistency of 2 mixture models' parameters and local false discovery rate estimates are evaluated through statistical simulation studies.

摘要

药物-药物相互作用(DDI)是不良药物事件(ADE)的常见原因。电子病历(EMR)数据库和 FDA 的不良事件报告系统(FAERS)数据库是挖掘和测试与 ADE 相关的 DDI 信号的主要数据源。大多数 DDI 数据挖掘方法侧重于药物对药物的相互作用,而缺乏在医学数据库中检测高维 DDI 的方法。在本文中,我们提出了 2 种新的混合药物计数反应模型,用于检测引起肌病的高维药物组合。“计数”表示组合中药物的数量。一种模型称为具有最大风险阈值的固定概率混合药物计数反应模型(FMDRM-MRT)。另一种模型称为具有最大风险阈值的依赖计数概率混合药物计数反应模型(CMDRM-MRT),其中混合概率与计数有关。与我们小组之前开发的混合药物计数反应模型(MDRM)相比,这 2 个新模型在检测高维药物组合对肌病的影响方面表现出更好的可能性。CMDRM-MRT 分别在 EMR 和 FAERS 数据库中识别和验证了(54;374;637;442;131)2 到 6 种药物相互作用,这些相互作用会引起肌病。我们进一步证明 FAERS 数据捕捉到的最大肌病风险远高于 EMR 数据。通过统计模拟研究评估了 2 种混合模型参数和局部假发现率估计的一致性。

相似文献

1
Mixture drug-count response model for the high-dimensional drug combinatory effect on myopathy.
Stat Med. 2018 Feb 20;37(4):673-686. doi: 10.1002/sim.7545. Epub 2017 Nov 23.
4
Mining and visualizing high-order directional drug interaction effects using the FAERS database.
BMC Med Inform Decis Mak. 2020 Mar 18;20(Suppl 2):50. doi: 10.1186/s12911-020-1053-z.
7
Mining Directional Drug Interaction Effects on Myopathy Using the FAERS Database.
IEEE J Biomed Health Inform. 2019 Sep;23(5):2156-2163. doi: 10.1109/JBHI.2018.2874533. Epub 2018 Oct 8.
8
Mining association patterns of drug-interactions using post marketing FDA's spontaneous reporting data.
J Biomed Inform. 2016 Apr;60:294-308. doi: 10.1016/j.jbi.2016.02.009. Epub 2016 Feb 20.
9
Zero-inflated Poisson model based likelihood ratio test for drug safety signal detection.
Stat Methods Med Res. 2017 Feb;26(1):471-488. doi: 10.1177/0962280214549590. Epub 2016 Jul 11.
10
A pharmacovigilance study of pharmacokinetic drug interactions using a translational informatics discovery approach.
Br J Clin Pharmacol. 2022 Feb;88(4):1471-1481. doi: 10.1111/bcp.14762. Epub 2021 Feb 23.

引用本文的文献

1
Potential Drug Dose-Specific Adverse Three-Drug Combinations: A US Insurance Claims Data-Based Study.
Pharmacoepidemiol Drug Saf. 2025 Sep;34(9):e70199. doi: 10.1002/pds.70199.
2
A trajectory-informed model for detecting drug-drug-host interaction from real-world data.
J Biomed Inform. 2025 May 31;168:104859. doi: 10.1016/j.jbi.2025.104859.
3
A theoretical model for detecting drug interaction with awareness of timing of exposure.
Sci Rep. 2025 Apr 21;15(1):13693. doi: 10.1038/s41598-025-98528-5.
4
Application of an Innovative Data Mining Approach Towards Safe Polypharmacy Practice in Older Adults.
Drug Saf. 2024 Jan;47(1):93-102. doi: 10.1007/s40264-023-01370-9. Epub 2023 Nov 7.
5
Use of Electronic Health Record Data for Drug Safety Signal Identification: A Scoping Review.
Drug Saf. 2023 Aug;46(8):725-742. doi: 10.1007/s40264-023-01325-0. Epub 2023 Jun 20.
6
Pattern Discovery from High-Order Drug-Drug Interaction Relations.
J Healthc Inform Res. 2018 Jun 18;2(3):272-304. doi: 10.1007/s41666-018-0020-2. eCollection 2018 Sep.
7
Random control selection for conducting high-throughput adverse drug events screening using large-scale longitudinal health data.
CPT Pharmacometrics Syst Pharmacol. 2021 Sep;10(9):1032-1042. doi: 10.1002/psp4.12673. Epub 2021 Aug 17.

本文引用的文献

1
A Review of Statistical Methods for Safety Surveillance.
Ther Innov Regul Sci. 2014 Jan;48(1):98-108. doi: 10.1177/2168479013514236.
3
Pharmacoepidemiologic Methods for Studying the Health Effects of Drug-Drug Interactions.
Clin Pharmacol Ther. 2016 Jan;99(1):92-100. doi: 10.1002/cpt.277. Epub 2015 Nov 23.
4
Graphic Mining of High-Order Drug Interactions and Their Directional Effects on Myopathy Using Electronic Medical Records.
CPT Pharmacometrics Syst Pharmacol. 2015 Aug;4(8):481-8. doi: 10.1002/psp4.59. Epub 2015 Jul 6.
5
A Mixture Dose-Response Model for Identifying High-Dimensional Drug Interaction Effects on Myopathy Using Electronic Medical Record Databases.
CPT Pharmacometrics Syst Pharmacol. 2015 Aug;4(8):474-80. doi: 10.1002/psp4.53. Epub 2015 Jul 6.
6
Signal detection in FDA AERS database using Dirichlet process.
Stat Med. 2015 Aug 30;34(19):2725-42. doi: 10.1002/sim.6510. Epub 2015 Apr 29.
7
Efficiently mining Adverse Event Reporting System for multiple drug interactions.
AMIA Jt Summits Transl Sci Proc. 2014 Apr 7;2014:120-5. eCollection 2014.
8
Zero-inflated Poisson model based likelihood ratio test for drug safety signal detection.
Stat Methods Med Res. 2017 Feb;26(1):471-488. doi: 10.1177/0962280214549590. Epub 2016 Jul 11.
9
Likelihood ratio based tests for longitudinal drug safety data.
Stat Med. 2014 Jun 30;33(14):2408-24. doi: 10.1002/sim.6103. Epub 2014 Feb 9.
10
Hospital admissions/visits associated with drug-drug interactions: a systematic review and meta-analysis.
Pharmacoepidemiol Drug Saf. 2014 May;23(5):489-97. doi: 10.1002/pds.3592. Epub 2014 Mar 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验