IEEE J Biomed Health Inform. 2019 Sep;23(5):2156-2163. doi: 10.1109/JBHI.2018.2874533. Epub 2018 Oct 8.
Mining high-order drug-drug interaction (DDI) induced adverse drug effects from electronic health record databases is an emerging area, and very few studies have explored the relationships between high-order drug combinations. We investigate a novel pharmacovigilance problem for mining directional DDI effects on myopathy using the FDA Adverse Event Reporting System (FAERS) database. Our paper provides information on the risk of myopathy associated with adding new drugs on the already prescribed medication, and visualizes the identified directional DDI patterns as user-friendly graphical representation. We utilize the Apriori algorithm to extract frequent drug combinations from the FAERS database. We use odds ratio to estimate the risk of myopathy associated with directional DDI. We create a tree-structured graph to visualize the findings for easy interpretation. Our method confirmed myopathy association with previously reported HMG-CoA reductase inhibitors like rosuvastatin, fluvastatin, simvastatin, and atorvastatin. New, previously unidentified but mechanistically plausible associations with myopathy were also observed, such as the DDI between pamidronate and levofloxacin. Additional top findings are gadolinium-based imaging agents, which however are often used in myopathy diagnosis. Other DDIs with no obvious mechanism are also reported, such as that of sulfamethoxazole with trimethoprim and potassium chloride. This study shows the feasibility to estimate high-order directional DDIs in a fast and accurate manner. The results of the analysis could become a useful tool in the specialists' hands through an easy-to-understand graphic visualization.
从电子健康记录数据库中挖掘高阶药物-药物相互作用(DDI)诱导的药物不良反应是一个新兴领域,很少有研究探索高阶药物组合之间的关系。我们使用 FDA 不良事件报告系统(FAERS)数据库研究了一种挖掘药物性肌病的定向 DDI 效应的新药物警戒问题。本文提供了关于在已开处方药物的基础上添加新药与肌病相关的风险信息,并以用户友好的图形表示形式可视化了所识别的定向 DDI 模式。我们利用 Apriori 算法从 FAERS 数据库中提取频繁的药物组合。我们使用比值比来估计与定向 DDI 相关的肌病风险。我们创建了一个树状结构图来可视化发现结果,以便于解释。我们的方法证实了与先前报道的 HMG-CoA 还原酶抑制剂(如瑞舒伐他汀、氟伐他汀、辛伐他汀和阿托伐他汀)相关的肌病关联。还观察到了与肌病的新的、以前未识别但在机制上合理的关联,如帕米膦酸和左氧氟沙星之间的 DDI。其他没有明显机制的顶级发现是钆基成像剂,但它们通常用于肌病诊断。还报告了其他无明显机制的 DDI,如磺胺甲恶唑与甲氧苄啶和氯化钾。本研究表明,以快速准确的方式估计高阶定向 DDI 是可行的。通过易于理解的图形可视化,分析结果可以成为专家手中的有用工具。