Department of Civil and Environmental Engineering. University of Houston , Houston, Texas 77004, United States.
Environ Sci Technol. 2018 Jan 2;52(1):184-194. doi: 10.1021/acs.est.7b04131. Epub 2017 Dec 14.
Microbial remediation of metals can alleviate the concerns of metal pollution in the environment. The microbial remediation, however, can be a complex process since microbial metal resistance and biodiversity can play a direct role in the bioremediation process. This study aims to understand the relationships among microbial metal resistance, biodiversity, and metal sorption capacity. Meta-analyses based on 735 literature data points of minimum inhibitory concentrations (MIC) of Plantae, Bacteria, and Fungi exposed to As, Cd, Cr Cu, Ni, Pb, and Zn showed that metal resistance depends on the microbial Kingdom and the type of heavy metal and that consortia are significantly more resistant to heavy metals than pure cultures. A similar meta-analysis comparing 517 MIC values from different bacterial genera (Bacillus, Cupriavidus, Klebsiella, Ochrobactrum, Paenibacillus, Pseudomonas, and Ralstonia) confirmed that metal tolerance depends on the type of genus. Another meta-analysis with 195 studies showed that the maximum sorption capacity is influenced by microbial Kingdoms, the type of biosorbent (whether consortia or pure cultures), and the type of metal. This study also suggests that bioremediation using microbial consortia is a valid option to reduce environmental metal contaminations.
微生物修复可以缓解人们对环境中金属污染的担忧。然而,微生物修复可能是一个复杂的过程,因为微生物的金属抗性和生物多样性可以直接影响生物修复过程。本研究旨在了解微生物金属抗性、生物多样性和金属吸附能力之间的关系。基于 735 个最小抑制浓度(MIC)文献数据点的荟萃分析表明,植物、细菌和真菌对砷、镉、铬、铜、镍、铅和锌的抗性取决于微生物王国和重金属类型,并且与纯培养物相比,群落对重金属的抗性显著更高。对来自不同细菌属(芽孢杆菌属、贪铜菌属、克雷伯氏菌属、欧文氏菌属、类芽孢杆菌属、假单胞菌属和罗尔斯通氏菌属)的 517 个 MIC 值进行的类似荟萃分析证实,金属耐受性取决于属的类型。另一项荟萃分析有 195 项研究表明,最大吸附能力受微生物王国、生物吸附剂类型(群落或纯培养物)和金属类型的影响。本研究还表明,使用微生物群落进行生物修复是减少环境金属污染的一种有效选择。