Suppr超能文献

新冠病毒肺炎肺部病变深度学习分割模型在低剂量胸部CT上的价值及预后影响

Value and prognostic impact of a deep learning segmentation model of COVID-19 lung lesions on low-dose chest CT.

作者信息

Bartoli Axel, Fournel Joris, Maurin Arnaud, Marchi Baptiste, Habert Paul, Castelli Maxime, Gaubert Jean-Yves, Cortaredona Sebastien, Lagier Jean-Christophe, Million Matthieu, Raoult Didier, Ghattas Badih, Jacquier Alexis

机构信息

Department of Radiology, Hôpital de la Timone Adultes, AP-HM. 264, rue Saint-Pierre, 13385 Marseille Cedex 05, France.

CRMBM - UMR CNRS 7339, Medical Faculty, Aix-Marseille University, 27, Boulevard Jean Moulin, 13385 Marseille Cedex 05, France.

出版信息

Res Diagn Interv Imaging. 2022 Mar;1:100003. doi: 10.1016/j.redii.2022.100003. Epub 2022 Mar 22.

Abstract

OBJECTIVES

  1. To develop a deep learning (DL) pipeline allowing quantification of COVID-19 pulmonary lesions on low-dose computed tomography (LDCT). 2) To assess the prognostic value of DL-driven lesion quantification.

METHODS

This monocentric retrospective study included training and test datasets taken from 144 and 30 patients, respectively. The reference was the manual segmentation of 3 labels: normal lung, ground-glass opacity(GGO) and consolidation(Cons). Model performance was evaluated with technical metrics, disease volume and extent. Intra- and interobserver agreement were recorded. The prognostic value of DL-driven disease extent was assessed in 1621 distinct patients using C-statistics. The end point was a combined outcome defined as death, hospitalization>10 days, intensive care unit hospitalization or oxygen therapy.

RESULTS

The Dice coefficients for lesion (GGO+Cons) segmentations were 0.75±0.08, exceeding the values for human interobserver (0.70±0.08; 0.70±0.10) and intraobserver measures (0.72±0.09). DL-driven lesion quantification had a stronger correlation with the reference than inter- or intraobserver measures. After stepwise selection and adjustment for clinical characteristics, quantification significantly increased the prognostic accuracy of the model (0.82 vs. 0.90; <0.0001).

CONCLUSIONS

A DL-driven model can provide reproducible and accurate segmentation of COVID-19 lesions on LDCT. Automatic lesion quantification has independent prognostic value for the identification of high-risk patients.

摘要

目的

1)开发一种深度学习(DL)流程,用于在低剂量计算机断层扫描(LDCT)上对新型冠状病毒肺炎(COVID-19)肺部病变进行量化。2)评估DL驱动的病变量化的预后价值。

方法

这项单中心回顾性研究分别纳入了来自144例和30例患者的训练和测试数据集。参考标准为对3个标签进行手动分割:正常肺、磨玻璃影(GGO)和实变(Cons)。通过技术指标、疾病体积和范围评估模型性能。记录观察者内和观察者间的一致性。使用C统计量评估1621例不同患者中DL驱动的疾病范围的预后价值。终点是一个综合结局,定义为死亡、住院超过10天、入住重症监护病房或接受氧疗。

结果

病变(GGO+Cons)分割的Dice系数为0.75±0.08,超过了观察者间(0.70±0.08;0.70±0.10)和观察者内测量值(0.72±0.09)。与观察者间或观察者内测量相比,DL驱动的病变量化与参考标准的相关性更强。在对临床特征进行逐步选择和调整后,量化显著提高了模型的预后准确性(0.82对0.90;<0.0001)。

结论

DL驱动的模型可以在LDCT上对COVID-19病变进行可重复且准确的分割。自动病变量化对识别高危患者具有独立的预后价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/084f/11265395/2a82e3728950/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验