Bartoli Axel, Fournel Joris, Maurin Arnaud, Marchi Baptiste, Habert Paul, Castelli Maxime, Gaubert Jean-Yves, Cortaredona Sebastien, Lagier Jean-Christophe, Million Matthieu, Raoult Didier, Ghattas Badih, Jacquier Alexis
Department of Radiology, Hôpital de la Timone Adultes, AP-HM. 264, rue Saint-Pierre, 13385 Marseille Cedex 05, France.
CRMBM - UMR CNRS 7339, Medical Faculty, Aix-Marseille University, 27, Boulevard Jean Moulin, 13385 Marseille Cedex 05, France.
Res Diagn Interv Imaging. 2022 Mar;1:100003. doi: 10.1016/j.redii.2022.100003. Epub 2022 Mar 22.
This monocentric retrospective study included training and test datasets taken from 144 and 30 patients, respectively. The reference was the manual segmentation of 3 labels: normal lung, ground-glass opacity(GGO) and consolidation(Cons). Model performance was evaluated with technical metrics, disease volume and extent. Intra- and interobserver agreement were recorded. The prognostic value of DL-driven disease extent was assessed in 1621 distinct patients using C-statistics. The end point was a combined outcome defined as death, hospitalization>10 days, intensive care unit hospitalization or oxygen therapy.
The Dice coefficients for lesion (GGO+Cons) segmentations were 0.75±0.08, exceeding the values for human interobserver (0.70±0.08; 0.70±0.10) and intraobserver measures (0.72±0.09). DL-driven lesion quantification had a stronger correlation with the reference than inter- or intraobserver measures. After stepwise selection and adjustment for clinical characteristics, quantification significantly increased the prognostic accuracy of the model (0.82 vs. 0.90; <0.0001).
A DL-driven model can provide reproducible and accurate segmentation of COVID-19 lesions on LDCT. Automatic lesion quantification has independent prognostic value for the identification of high-risk patients.
1)开发一种深度学习(DL)流程,用于在低剂量计算机断层扫描(LDCT)上对新型冠状病毒肺炎(COVID-19)肺部病变进行量化。2)评估DL驱动的病变量化的预后价值。
这项单中心回顾性研究分别纳入了来自144例和30例患者的训练和测试数据集。参考标准为对3个标签进行手动分割:正常肺、磨玻璃影(GGO)和实变(Cons)。通过技术指标、疾病体积和范围评估模型性能。记录观察者内和观察者间的一致性。使用C统计量评估1621例不同患者中DL驱动的疾病范围的预后价值。终点是一个综合结局,定义为死亡、住院超过10天、入住重症监护病房或接受氧疗。
病变(GGO+Cons)分割的Dice系数为0.75±0.08,超过了观察者间(0.70±0.08;0.70±0.10)和观察者内测量值(0.72±0.09)。与观察者间或观察者内测量相比,DL驱动的病变量化与参考标准的相关性更强。在对临床特征进行逐步选择和调整后,量化显著提高了模型的预后准确性(0.82对0.90;<0.0001)。
DL驱动的模型可以在LDCT上对COVID-19病变进行可重复且准确的分割。自动病变量化对识别高危患者具有独立的预后价值。