Program in Neuroscience, Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 W. Call Street, Tallahassee, FL 32306, United States.
Program in Neuroscience, Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 W. Call Street, Tallahassee, FL 32306, United States.
Neuropharmacology. 2018 Mar 1;130:30-41. doi: 10.1016/j.neuropharm.2017.11.022. Epub 2017 Nov 21.
Low-dose ketamine is a rapid-acting antidepressant, to which female rodents are more sensitive as compared to males. However, the mechanism mediating this sex difference in ketamine sensitivity remains elusive.
We sought to determine whether male and female mice differ in their behavioral sensitivity to low doses of ketamine, and uncover how ovarian hormones influence females' ketamine sensitivity. We also aimed to uncover some of the molecular mechanism(s) in mood-related brain regions that mediate sex differences in ketamine antidepressant effects.
Male and female mice (freely-cycling, diestrus 1 [D1], proestrus [Pro], or D1 treated with an estrogen receptor (ER) α, ERβ, or progesterone receptor (PR) agonist) received ketamine (0, 1.5, or 3 mg/kg, intraperitoneally) and were tested in the forced swim test (FST) 30 min later. Ketamine's influence over synaptic plasticity markers in the prefrontal cortex (PFC) and hippocampus (HPC) of males, D1, and Pro females was quantified by Western blot 1 h post-treatment.
Males, freely cycling females, D1 and Pro females exhibited antidepressant-like responses to 3 mg/kg ketamine. Pro females were the only group where ketamine exhibited an antidepressant effect at 1.5 mg/kg. D1 females treated with an agonist for ERα or ERβ exhibited an antidepressant-like response to 1.5 mg/kg ketamine. Ketamine (3 mg/kg) increased synaptic plasticity-related proteins in the PFC and HPC of males, D1, and Pro females. Yet, Pro females exhibited an increase in p-Akt and p-CaMKIIα in response to 1.5 and 3 mg/kg ketamine.
Our results indicate that females' enhanced sensitivity to ketamine during Pro is likely mediated through estradiol acting on ERα and ERβ, leading to greater activation of synaptic plasticity-related kinases within the PFC and HPC.
小剂量氯胺酮是一种快速起效的抗抑郁药,雌性啮齿动物比雄性动物对此更为敏感。然而,介导氯胺酮敏感性这种性别差异的机制仍不清楚。
我们旨在确定雄性和雌性小鼠在对低剂量氯胺酮的行为敏感性上是否存在差异,并揭示卵巢激素如何影响雌性对氯胺酮的敏感性。我们还旨在揭示介导氯胺酮抗抑郁作用性别差异的与情绪相关的大脑区域中的一些分子机制。
自由循环、动情前期 1 期(D1)、动情前期(Pro)或 D1 接受雌激素受体(ER)α、ERβ 或孕激素受体(PR)激动剂处理的雄性和雌性小鼠(n=8-12/组)接受氯胺酮(0、1.5 或 3mg/kg,腹膜内注射),并在 30 分钟后进行强迫游泳测试(FST)。雄性、D1 和 Pro 雌性小鼠在治疗后 1 小时通过 Western blot 定量检测前额叶皮层(PFC)和海马(HPC)中的突触可塑性标志物受氯胺酮的影响。
雄性、自由循环雌性、D1 和 Pro 雌性对 3mg/kg 氯胺酮表现出抗抑郁样反应。只有 Pro 雌性在 1.5mg/kg 时表现出抗抑郁作用。D1 雌性接受 ERα 或 ERβ 激动剂治疗后对 1.5mg/kg 氯胺酮表现出抗抑郁样反应。氯胺酮(3mg/kg)增加了雄性、D1 和 Pro 雌性 PFC 和 HPC 中的突触可塑性相关蛋白。然而,Pro 雌性在 1.5 和 3mg/kg 氯胺酮作用下 p-Akt 和 p-CaMKIIα 增加。
我们的结果表明,Pro 期间雌性对氯胺酮的敏感性增强可能是通过雌二醇作用于 ERα 和 ERβ 介导的,导致 PFC 和 HPC 中的突触可塑性相关激酶更活跃。